【題目】已知向量
=(3,﹣1),
=(2,1) 求:
(1)|
|.
(2)求x的值使x
+3
與3
﹣2
為平行向量.
【答案】
(1)解:根據(jù)題意,向量
=(3,﹣1),
=(2,1)
則
+
=(5,0),
|
+
|=
=5,
(2)解:向量
=(3,﹣1),
=(2,1)
則x
+3
=(3x+6,3﹣x),3
﹣2
=(5,﹣5),
若x
+3
與3
﹣2
為平行向量,
則有(3x+6)×(﹣5)=(3﹣x)×5,
解可得x=﹣
,
即當(dāng)x=﹣
時(shí),向量x
+3
與3
﹣2
為平行向量.
【解析】(1)根據(jù)題意,由
、
的坐標(biāo)可得向量
+
的坐標(biāo),由向量模的公式計(jì)算可得答案;(2)由
、
的坐標(biāo)可得向量x
+3
與3
﹣2
的坐標(biāo),再結(jié)合向量平行的坐標(biāo)表示公式可得(3x+6)×(﹣5)=(3﹣x)×5,解可得x的值,即可得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平面向量的坐標(biāo)運(yùn)算(坐標(biāo)運(yùn)算:設(shè)
,
則
;
;設(shè)
,則
).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系
中,橢圓
:
(
)的離心率是
,拋物線
:
的焦點(diǎn)
是
的一個(gè)頂點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)
是
上動(dòng)點(diǎn),且位于第一象限,
在點(diǎn)
處的切線
與
交于不同的兩點(diǎn)
,
,線段
的中點(diǎn)為
,直線
與過
且垂直于
軸的直線交于點(diǎn)
.
(i)求證:點(diǎn)
在定直線上;
![]()
(ii)直線
與
軸交于點(diǎn)
,記
的面積為
,
的面積為
,求
的最大值及取得最大值時(shí)點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為一簡(jiǎn)單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2. ![]()
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ![]()
(1)若m=1,求函數(shù)f(x)的定義域.
(2)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.
(3)若函數(shù)f(x)在區(qū)間
上是增函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量
與
.
(Ⅰ)若
在
方向上的投影為
,求λ的值;
(Ⅱ)命題P:向量
與
的夾角為銳角;
命題q:
,其中向量
,
=(
)(λ,α∈R).若“p或q”為真命題,“p且q”為假命題,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C1的圓心在坐標(biāo)原點(diǎn)O,且恰好與直線l1:x﹣2y+3
=0相切,點(diǎn)A為圓上一動(dòng)點(diǎn),AM⊥x軸于點(diǎn)M,且動(dòng)點(diǎn)N滿足
,設(shè)動(dòng)點(diǎn)N的軌跡為曲線C.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于不同兩點(diǎn)A,B,且滿足
(O為坐標(biāo)原點(diǎn)),求線段AB長(zhǎng)度的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】交警隨機(jī)抽取了途徑某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位:
),現(xiàn)將其分成六組為
后得到如圖所示的頻率分布直方圖.
(1)某小型轎車途經(jīng)該路段,其速度在
以上的概率是多少?
(2)若對(duì)車速在
兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車,求至少有一輛小型轎車速度在
內(nèi)的概率.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)若
,解不等式
;
(2)若存在實(shí)數(shù)
,使得不等式
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,設(shè)命題p:橢圓C:
+
=1的焦點(diǎn)在x軸上;命題q:直線l:x﹣y+m=0與圓O:x2+y2=9有公共點(diǎn). 若命題p、命題q中有且只有一個(gè)為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com