已知關(guān)于
的方程
:
,
R.
(Ⅰ)若方程
表示圓,求
的取值范圍;
(Ⅱ)若圓
與直線
:
相交于
兩點(diǎn),且
=
,求
的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過點(diǎn)A(4,1).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點(diǎn)B、D分別為圓C1、C2上任意一點(diǎn),求|BD|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)求圓心在
軸上,且與直線
相切于點(diǎn)
的圓的方程;
(2)已知圓
過點(diǎn)
,且與圓
關(guān)于直線
對稱,求圓
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知以點(diǎn)C
(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
經(jīng)過點(diǎn)
和
,且圓心在直線
上.
(1)求圓
的方程;
(2)若點(diǎn)
為圓
上任意一點(diǎn),求點(diǎn)
到直線
的距離的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知
的三個(gè)頂點(diǎn)
,
,
,其外接圓為
.
(1)若直線
過點(diǎn)
,且被
截得的弦長為2,求直線
的方程;
(2)對于線段
上的任意一點(diǎn)
,若在以
為圓心的圓上都存在不同的兩點(diǎn)
,使得點(diǎn)
是線段
的中點(diǎn),求
的半徑
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓
的左右頂點(diǎn)分別為
,離心率
.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且
.
(1)求橢圓的方程;
(2)求動點(diǎn)C的軌跡E的方程;
(3)設(shè)直線AC(C點(diǎn)不同于A,B)與直線
交于點(diǎn)R,D為線段RB的中點(diǎn),試判斷直線CD與曲線E的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
經(jīng)過
,
兩點(diǎn),且在兩坐標(biāo)軸上的四個(gè)截距之和為2.
(1)求圓
的方程;
(2)若
為圓內(nèi)一點(diǎn),求經(jīng)過點(diǎn)
被圓
截得的弦長最短時(shí)的直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
關(guān)于直線
對稱,圓心
在第二象限,半徑為
.
(1)求圓
的方程;
(2)是否存在直線
與圓
相切,且在
軸、
軸上的截距相等?若存在,求直線的方程;若不存在,說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com