【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記“甲得第一名”為
,“乙得第二名”為
,“丙得第三名”為
,若
是真命題,
是假命題,
是真命題,則選拔賽的結(jié)果為( )
A.甲得第一名、乙得第三名、丙得第二名
B.甲沒得第一名、乙沒得第二名、丙得第三名
C.甲得第一名、乙沒得第二名、丙得第三名
D.甲得第二名、乙得第一名、丙得第三名
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】筒車是我國古代發(fā)明的一種水利灌溉工具,明朝科學(xué)家徐光啟在《農(nóng)政全書》中用圖畫描繪了筒車的工作原理(如圖1).因其經(jīng)濟(jì)又環(huán)保,至今還在農(nóng)業(yè)生產(chǎn)中得到使用(如圖2).假定在水流量穩(wěn)定的情況下,筒車上的每一個盛水筒都做勻速圓周運(yùn)動.因筒車上盛水筒的運(yùn)動具有周期性,可以考慮利用三角函數(shù)模型刻畫盛水筒(視為質(zhì)點(diǎn))的運(yùn)動規(guī)律.將筒車抽象為一個幾何圖形,建立直角坐標(biāo)系(如圖3).設(shè)經(jīng)過t秒后,筒車上的某個盛水筒
從點(diǎn)P0運(yùn)動到點(diǎn)P.由筒車的工作原理可知,這個盛水筒距離水面的高度H(單位:
),由以下量所決定:筒車轉(zhuǎn)輪的中心O到水面的距離h,筒車的半徑r,筒車轉(zhuǎn)動的角速度ω(單位:
),盛水筒的初始位置P0以及所經(jīng)過的時間t(單位:
).已知r=3
,h=2
,筒車每分鐘轉(zhuǎn)動(按逆時針方向)1.5圈, 點(diǎn)P0距離水面的高度為3.5
,若盛水筒M從點(diǎn)P0開始計算時間,則至少需要經(jīng)過_______
就可到達(dá)最高點(diǎn);若將點(diǎn)
距離水面的高度
表示為時間
的函數(shù),則此函數(shù)表達(dá)式為_________.
![]()
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)(5,2),且被圓C所截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
,以原點(diǎn)0為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)若曲線
方程中的參數(shù)是
,且
與
有且只有一個公共點(diǎn),求
的普通方程;
(2)已知點(diǎn)
,若曲線
方程中的參數(shù)是
,
,且
與
相交于
,
兩個不同點(diǎn),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由菱形
,平行四邊形
和矩形
組成的一個平面圖形,其中
,
,
,
,將其沿
,
折起使得
與
重合,如圖2.
![]()
(1)證明:圖2中的平面
平面
;
(2)求圖2中點(diǎn)
到平面
的距離;
(3)求圖2中二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的傾斜角為
,且經(jīng)過點(diǎn)
.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線
,從原點(diǎn)O作射線交
于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足
,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線
的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線
與曲線C交于P,Q兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時,求
的單調(diào)區(qū)間;
(2)若對任意
,都有
成立,求實數(shù)
的取值范圍;
(3)若過點(diǎn)
可作函數(shù)
圖像的三條不同切線,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
與
的圖像相交于點(diǎn)
,
兩點(diǎn),若動點(diǎn)
滿足
,則點(diǎn)
的軌跡方程是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線
(
為參數(shù)),
(
為參數(shù))
(Ⅰ)將
的方程化為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若
上的點(diǎn)對應(yīng)的參數(shù)為
,
為
上的動點(diǎn),求
中點(diǎn)
到直線
(
為參數(shù))距離的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com