分析 (1)利用f(0)=0,求出a的值;
(2)利用導(dǎo)數(shù),證明f(x)在R上是單調(diào)減函數(shù);
(3)求出f(x)=-1+$\frac{2}{{e}^{x}+1}$∈(-1,1),利用直線y=$\frac{1-k}{1+k}$(k∈R且為常數(shù))與函數(shù)f(x)的圖象有交點(diǎn),求k的取值范圍.
解答 (1)解:∵f(x)=a+$\frac{2}{{e}^{x}+1}$(a∈R)是奇函數(shù),
∴f(0)=a+1=0,
∴a=-1;
(2)證明:∵f(x)=-1+$\frac{2}{{e}^{x}+1}$,
∴f′(x)=$\frac{-2{e}^{x}}{({e}^{x}+1)^{2}}$<0,
∴f(x)在R上是單調(diào)減函數(shù);
(3)解:f(x)=-1+$\frac{2}{{e}^{x}+1}$∈(-1,1),
∵直線y=$\frac{1-k}{1+k}$(k∈R且為常數(shù))與函數(shù)f(x)的圖象有交點(diǎn),
∴-1<$\frac{1-k}{1+k}$<1,
∴k>0.
點(diǎn)評(píng) 本題考查函數(shù)的奇偶性、單調(diào)性,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | f(x)=x3 | B. | f(x)=x4-2 | C. | f(x)=x3+1 | D. | f(x)=x4-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com