【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).以原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)方程為
.
(1)求點(diǎn)
的直角坐標(biāo),并求曲線
的普通方程;
(2)設(shè)直線
與曲線
的兩個(gè)交點(diǎn)為
,求
的值.
【答案】(1)
,
.(2)6.
【解析】試題分析:(1)本問(wèn)考查極坐標(biāo)與直角坐標(biāo)的互化,以及參數(shù)方程化普通方程,根據(jù)公式
,易得P點(diǎn)的直角坐標(biāo),消去參數(shù)
可得曲線C的普通方程為
;(2)本問(wèn)考查直線參數(shù)方程標(biāo)準(zhǔn)形式下t的幾何意義,將直線l的參數(shù)方程代入曲線C的普通方程,得到關(guān)于t的一元二次方程,根據(jù)幾何意義有
,于是可以求出
的值.
試題解析:(1)由極值互化公式知:點(diǎn)
的橫坐標(biāo)
,點(diǎn)
的縱坐標(biāo)
,
所以
,消去參數(shù)
的曲線
的普通方程為:
.
(2)點(diǎn)
在直線
上,將直線的參數(shù)方程代入曲線
的普通方程得:
,設(shè)其兩個(gè)根為
,
,所以:
,
,
由參數(shù)
的幾何意義知:
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,以極點(diǎn)
為坐標(biāo)原點(diǎn),極軸為
的正半軸建立平面直角坐標(biāo)系
.
(1)求
和
的參數(shù)方程;
(2)已知射線
,將
逆時(shí)針旋轉(zhuǎn)
得到
,且
與
交于
兩點(diǎn),
與
交于
兩點(diǎn),求
取得最大值時(shí)點(diǎn)
的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體
中,已知四邊形
為矩形,
為平行四邊形,點(diǎn)
在平面
內(nèi)的射影恰好為點(diǎn)
,
的中點(diǎn)為
,
的中點(diǎn)為
,且
.
(1)求證:平面
平面
;
(2)求三棱錐
的體積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|
(1)若函數(shù)y=f(x)+x在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若對(duì)任意x∈[1,2]時(shí),函數(shù)f(x)的圖像恒在y=1圖像的下方,求實(shí)數(shù)a的取值范圍;
(3)設(shè)a≥2時(shí),求f(x)在區(qū)間[2,4]內(nèi)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)f(x)=x2+bx+c滿足f(2)=f(﹣2),且函數(shù)的f(x)的一個(gè)零點(diǎn)為1. (Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)對(duì)任意的
,4m2f(x)+f(x﹣1)≥4﹣4m2恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,
(
為自然對(duì)數(shù)的底數(shù)).
(1)設(shè)曲線
在
處的切線為
,若
與點(diǎn)
的距離為
,求
的值;
(2)若對(duì)于任意實(shí)數(shù)
,
恒成立,試確定
的取值范圍;
(3)當(dāng)
時(shí),函數(shù)
在
上是否存在極值?若存在,請(qǐng)求出極值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某單位的職工食堂中,食堂每天以
元/個(gè)的價(jià)格從面包店購(gòu)進(jìn)面包,然后以
元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以
元/個(gè)的價(jià)格賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購(gòu)進(jìn)了90個(gè)面包,以
(單位:個(gè),
)表示面包的需求量,
(單位:元)表示利潤(rùn).
![]()
(Ⅰ)求
關(guān)于
的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤(rùn)
不少于
元的概率;
(III)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量
,則取
,且
的概率等于需求量落入
的頻率),求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x 軸相交于點(diǎn)M. ![]()
(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)連結(jié)AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com