(本小題滿分12分)
如圖,設(shè)矩形ABCD(AB>AD)的周長為24,把它關(guān)于AC折起來,AB折過去后,交DC于點P. 設(shè)AB="x," 求△
的最大面積及相應(yīng)的x值.![]()
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在三棱錐A—BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
,BD=CD=1,另一個側(cè)面ABC是正三角形.![]()
(1)當(dāng)正視圖方向與向量
的方向相同時,畫出三棱錐A—BCD的三視圖;(要求標(biāo)出尺寸)
(2)求二面角B—AC—D的余弦值;
(3)在線段AC上是否存在一點E,使ED與平面BCD成30°角? 若存在,確定點E的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面四邊形ABCD中,
ABC為正三角形,
ADC為等腰直角三角形,AD=DC=2,將
ABC沿AC折起,使點B至點P,且PD=2
,M為PA的中點,N在線段PD上。![]()
(I)若PA
平面CMN,求證:AD//平面CMN;
(II)求直線PD與平面ACD所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,某幾何體的下部分是長為8,寬為6,高為3的長方體,上部分是側(cè)棱長都相等且高為3的四棱錐,求:![]()
(1)該幾何體的體積;
(2)該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)一個四棱錐的直觀圖和三視圖如圖所示: ![]()
![]()
(1)求證:
⊥
;
(2)求出這個幾何體的體積。
(3)若在PC上有一點E,滿足CE:EP=2:1,求證PA//平面BED。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在四棱柱
中,
面
,底面
是直角梯形,
,
,
,異面直線
與
所成角為
.![]()
(1)求證:
平面
;
(2)求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 已知四棱錐
,
底面ABCD,其三視圖如下,若M是PD的中點![]()
⑴ 求證:PB//平面MAC;
⑵ 求直線PC與平面MAC所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分13分)如圖,圓柱
內(nèi)有一個三棱柱
,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑.![]()
(Ⅰ)證明:平面
平面
;
(Ⅱ)設(shè)
,在圓柱
內(nèi)隨機選取一點,記該點取自于三棱柱
內(nèi)的概率為
.
(。┊(dāng)點C在圓周上運動時,求
的最大值;
(ii)記平面
與平面
所成的角為
,當(dāng)
取最大值時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平行六面體ABCD—A1B1C1D1中,AB=4,AD=3,AA1=5,∠BAD=90º ,
∠BAA1=∠DAA1=60º ,求AC1的長。![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com