在正三角形
中,
、
、
分別是
、
、
邊上的點(diǎn),滿足![]()
(如圖1).將△
沿
折起到
的位置,使二面角
成直二面角,連結(jié)
、
(如圖2)
![]()
(Ⅰ)求證:
⊥平面
;
(Ⅱ)求二面角
的余弦值.
(Ⅰ)取BE的中點(diǎn)D,連結(jié)DF∵AE
EB=CF
FA=1
2,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,AE=DE=1,∴EF⊥AD,在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.∴A1E⊥BE∴A1E⊥平面BEF,即A1E⊥平面BEP(Ⅱ)![]()
【解析】
試題分析:不妨設(shè)正三角形ABC 的邊長為 3 .
![]()
(I)在圖1中,取BE的中點(diǎn)D,連結(jié)DF.
∵AE
EB=CF
FA=1
2,∴AF=AD=2,而∠A=600,∴△ADF是正三角形,
又AE=DE=1,∴EF⊥AD. 2分
在圖2中,A1E⊥EF,BE⊥EF,∴∠A1EB為二面角A1-EF-B的平面角.
由題設(shè)條件知此二面角為直二面角,∴A1E⊥BE.
又BE∩EF=E,∴A1E⊥平面BEF,即A1E⊥平面BEP. .4分
(II)建立分別以ED、EF、EA為x軸、y軸、z軸的空間直角坐標(biāo)系,則E(0,0,0),A(0,0,1),
B(2,0,0),F(0,
,0), P (1,
,0),則,
.
設(shè)平面ABP的法向量為
,
由
平面ABP知,
,即
令
,得
,
.
,設(shè)平面AFP的法向量為
.
由
平面AFP知,
,即
令
,得
,
.
,
所以二面角B-A1P-F的余弦值是
13分
考點(diǎn):線面垂直的判定及二面角的求解
點(diǎn)評:證明線面垂直主要通過已知中的垂直的直線來推理,其重要注意翻折前后保持不變的量;第二問二面角的求解充分把握好從點(diǎn)E出發(fā)的三線兩兩垂直建立空間坐標(biāo)系,通過兩面的法向量的夾角得到二面角
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A.直角三角形 B.正三角形
C.等腰三角形 D.等腰直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
19. (本題滿分12分)
![]()
在正三角形
中,
、
、
分別是
、
、
邊上的點(diǎn),滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△
沿
折起到
的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大;
(Ⅲ)求二面角B-A1P-F的大小(用反三角函數(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)文) 題型:解答題
(本題滿分12分)![]()
在正三角形
中,
、
、
分別是
、
、
邊上的點(diǎn),滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△
沿
折起到
的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大小;
(Ⅲ)求二面角B-A1P-F的大。ㄓ梅慈呛瘮(shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:正定中學(xué)2010高三下學(xué)期第一次考試(數(shù)學(xué)文) 題型:解答題
(本題滿分12分)
![]()
在正三角形
中,
、
、
分別是
、
、
邊上的點(diǎn),滿足AE:EB=CF:FA=CP:PB=1:2(如圖1)。將△
沿
折起到
的位置,使二面角A1-EF-B成直二面角,連結(jié)A1B、A1P(如圖2)
(Ⅰ)求證:A1E⊥平面BEP;
(Ⅱ)求直線A1E與平面A1BP所成角的大;
(Ⅲ)求二面角B-A1P-F的大。ㄓ梅慈呛瘮(shù)表示)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com