分析 根據(jù)函數(shù)的性質(zhì)分別求出命題P,q成立的等價(jià)條件建立復(fù)合命題真假關(guān)系進(jìn)行求解即可.
解答 解:命題P滿足的條件為$\left\{\begin{array}{l}-\frac{4a-3}{2}≥0\\ 0<a<1\\ 3a≥1\end{array}\right.$可得$\frac{1}{3}≤a≤\frac{3}{4}$,….….(2分)
命題q滿足的條件為:a≥(x2)max,$x∈[{0,\frac{{\sqrt{2}}}{2}}]$,所以 $a≥\frac{1}{2}$…,…..(2分)
因?yàn)閜∧q為假,p∨q為真,所以p、q一真一假..…(5分)
若p真q假需滿足,$\left\{\begin{array}{l}\frac{1}{3}≤a≤\frac{3}{4}\\ a<\frac{1}{2}\end{array}\right.$解得$\frac{1}{3}≤a<\frac{1}{2}$…..8 分
若p假q真需滿足$\left\{\begin{array}{l}a<\frac{1}{3}或a>\frac{3}{4}\\ a≥\frac{1}{2}\end{array}\right.$解得$a>\frac{3}{4}$..….(11分)
綜上$\frac{1}{3}≤a<\frac{1}{2}$或$a>\frac{3}{4}$..…(12分)
點(diǎn)評(píng) 本題主要考查復(fù)合命題真假關(guān)系的應(yīng)用,根據(jù)條件求出命題的等價(jià)條件是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg | |
| B. | 回歸直線過(guò)樣本的中心($\overline{x}$,$\overline{y}$) | |
| C. | y與x具有正的線性相關(guān)關(guān)系 | |
| D. | 若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ?x∈R,log2x>0 | B. | 不存在x0∈R,使log2x0>0 | ||
| C. | 假命題 | D. | 真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞) | B. | (2$\sqrt{2}$,3) | C. | (2,3) | D. | (2$\sqrt{2}$,4) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com