分析 (1)根據(jù)線面平行的判定定理證明PB∥EF即可證明PB∥平面EAC;
(2)由PD⊥面ABCD,可證PD⊥AC,又可證AC⊥BD,利用線面垂直的判定定理即可證明AC⊥面PBD.
解答 (本題滿分為12分)
證明:(1)∵四邊形ABCD為正方形,
∴E為BD中點.
∵F為棱PD中點
∴PB∥EF.…(3分)
∵PB?平面ACF,EF?平面ACF,
∴直線PB∥平面ACF. …(6分)
(2)∵PD⊥面ABCD,AC?平面ABCD,
∴PD⊥AC,
又∵正方形ABCD中,有AC⊥BD,且PD∩BD=D,
∴AC⊥面PBD.…(12分)![]()
點評 本題主要考查空間直線和平面平行以及直線和平面垂直的判定,要求熟練掌握相應(yīng)的判定定理,考查了空間想象能力和推理論證能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{52π}{3}$ | B. | $\frac{44π}{3}$ | C. | 16π | D. | 20π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $-\frac{3}{2}+\frac{1}{2}i$ | B. | $-\frac{3}{2}-\frac{1}{2}i$ | C. | $\frac{3}{2}+\frac{1}{2}i$ | D. | $\frac{3}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | (3,5,2) | B. | (3,-5,2) | C. | (3,-5,-2) | D. | (-3,-5,-2) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com