【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為
(
為參數(shù)),在以O為極點,x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為![]()
(1)求曲線C的直角坐標方程
(2)設直線l與x軸交于點P,且與曲線C相交與A、B兩點,若
是
與
的等比中項,求實數(shù)m的值
科目:高中數(shù)學 來源: 題型:
【題目】在平行四邊形
中,
,
,過
點作
的垂線,交
的延長線于點
,
.連結
,交
于點
,如圖1,將
沿
折起,使得點
到達點
的位置,如圖2.
![]()
(1)證明:平面
平面
;
(2)若
為
的中點,
為
的中點,且平面
平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】奇函數(shù)f(x)在R上存在導數(shù)
,當x<0時,![]()
f(x),則使得(x2﹣1)f(x)<0成立的x的取值范圍為( )
A.(﹣1,0)∪(0,1)B.(﹣∞,﹣1)∪(0,1)
C.(﹣1,0)∪(1,+∞)D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲,在等腰梯形
中,
,
,
是
的中點.將
沿
折起,使二面角
為
,連接
,
得到四棱錐
(如圖乙),
為
的中點,
是棱
上一點.
![]()
(1)求證:當
為
的中點時,平面
平面
;
(2)是否存在一點
,使平面
與平面
所成的銳二面角為
,若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系
中,直線
的參數(shù)方程是
為參數(shù)),曲線
的參數(shù)方程是
為參數(shù)),以
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求直線
和曲線
的極坐標方程;
(2)已知射線
與曲線
交于
兩點,射線
與直線
交于
點,若
的面積為1,求
的值和弦長
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
(I)若函數(shù)
的圖象在
處的切線斜率為1,求實數(shù)
的值;
(Ⅱ)求函數(shù)
的單調區(qū)間;
(Ⅲ)若函數(shù)
在[1,2]上是減函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市旅游管理部門為提升該市26個旅游景點的服務質量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分.每項評分最低分0分,最高分100分.每個景點總分為這五項得分之和,根據(jù)考核評分結果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如圖
![]()
請根據(jù)圖中所提供的信息,完成下列問題:
(1)若從交通得分排名前5名的景點中任取1個,求其安全得分大于90分的概率;
(2)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望;
(3)記該市26個景點的交通平均得分為
,安全平均得分為
,寫出
和
的大小關系?(只寫出結果)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在直角坐標系xOy中,圓C的參數(shù)方程為
(θ為參數(shù)),直線l經過定點P(2,3),傾斜角為
.
(Ⅰ)寫出直線l的參數(shù)方程和圓C的標準方程;
(Ⅱ)設直線l與圓C相交于A,B兩點,求|PA|·|PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)![]()
(1)當
時,討論函數(shù)
的單調性;
(2)當
時,令
,是否存在區(qū)間
,使得函數(shù)
在區(qū)間
上的值域為
,若存在,求實數(shù)
的取值范圍;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com