(本小題滿分16分)已知![]()
(I)如果函數(shù)
的單調(diào)遞減區(qū)間為
,求函數(shù)
的解析式;
(II)在(Ⅰ)的條件下,求函數(shù)
的圖像在點(diǎn)
處的切線方程;
(III)若不等式
恒成立,求實(shí)數(shù)
的取值范圍.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)![]()
(Ⅰ)若
在
處取得極值,求
的值;
(Ⅱ)討論
的單調(diào)性;
(Ⅲ)證明:
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)若
為
的極值點(diǎn),求實(shí)數(shù)
的值;
(2)若
在
上為增函數(shù),求實(shí)數(shù)
的取值范圍;
(3)當(dāng)
時(shí),方程
有實(shí)根,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A、B、C是直線l上的三點(diǎn),向量
、
、
滿足
,(O不在直線l上
)
(1)求
的表達(dá)式;
(2)若函數(shù)
在
上為增函數(shù),求a的范圍;
(3)當(dāng)
時(shí),求證:
對(duì)
的正整數(shù)n成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知函數(shù)
.
(Ⅰ)求函數(shù)
的極大值;
(Ⅱ)若
對(duì)滿足
的任意實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍(這里
是自然對(duì)數(shù)的底數(shù));
(Ⅲ)求證:對(duì)任意正數(shù)
、
、
、
,恒有![]()
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù)
。
(1)若
在
處取得極值,求
的值;
(2)若
在定義域內(nèi)為增函數(shù),求
的取值范圍;
(3)設(shè)
,當(dāng)
時(shí),
求證:①
在其定義域內(nèi)恒成立;
求證:②
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
.(
).
(1)當(dāng)
時(shí),求函數(shù)
的極值;
(2)若對(duì)
,有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
的圖象過點(diǎn)P(0,2),且在點(diǎn)M
處的切線方程為
.
(Ⅰ)求函數(shù)
的解析式;(Ⅱ)求函數(shù)
的單調(diào)區(qū)間.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com