【題目】省環(huán)保研究所對某市市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)
與時刻
(時)的關(guān)系為
,其中
是與氣象有關(guān)的參數(shù),且
,若用每天
的最大值為當(dāng)天的綜合放射性污染指數(shù),并記作
.
(1)令
.求
的取值范圍;
(2)求
;
(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前該市市中心的綜合放射性污染指數(shù)是否超標(biāo).
【答案】(1)
;(2)
;(3)當(dāng)
時不超標(biāo),當(dāng)
時超標(biāo)
【解析】試題分析:(1)中的函數(shù)為
,它是分式函數(shù),當(dāng)
時可把其轉(zhuǎn)化為雙勾函數(shù),從而求出
的取值范圍.注意
需單獨(dú)計算.因
,故(2)中需分
和
兩類情況討論
的符號,在兩段區(qū)間上分別討論函數(shù)的單調(diào)性得到
,比較
的大小可以得到
的表達(dá)式,最后通過解不等式
得到
的取值范圍,依據(jù)該范圍判斷是否超標(biāo).
解析:(1)當(dāng)
時,
;
當(dāng)
時,
,當(dāng)且僅當(dāng)
等號成立,所以
;
綜上,
的取值范圍是
.
(2)當(dāng)
時,記
,則
.
因為
在
單調(diào)遞減,在
上單調(diào)遞增,且
,
,
,故
.
(3)當(dāng)
時,令
,得
,所以
;
當(dāng)
時,令
,得
,所以
;
故當(dāng)
時不超標(biāo);當(dāng)
超標(biāo).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圓C1:x2+y2=m與圓C2:x2+y2﹣6x﹣8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,P為第三象限內(nèi)一點(diǎn)且在圓C1上,直線PA與y軸交于點(diǎn)M,直線PB與x軸交于點(diǎn)N,求證:四邊形ABNM的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某矩形花壇ABCD長AB=3m,寬AD=2m,現(xiàn)將此花壇在原有基礎(chǔ)上有拓展成三角形區(qū)域,AB、AD分別延長至E、F并使E、C、F三點(diǎn)共線. ![]()
(1)要使三角形AEF的面積大于16平方米,則AF的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)AF的長度是多少時,三角形AEF的面積最?并求出最小面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過
三點(diǎn).
(1)求橢圓
的方程;
(2)在直線
上任取一點(diǎn)
,連接
,分別與橢圓
交于
兩點(diǎn),判斷直線
是否過定點(diǎn)?若是,求出該定點(diǎn).若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn為數(shù)列{an}的前n項和,Sn=2n2﹣30n.
(1)求a1及an;
(2)判斷這個數(shù)列是否是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)
,則( )
A.最大值為1,最小值為
B.最大值為1,無最小值
C.最小值為
,無最大值
D.既無最大值也無最小值查看解析
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式x2﹣x﹣m+1>0.
(1)當(dāng)m=3時解此不等式;
(2)若對于任意的實數(shù)x,此不等式恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
為圓
的圓心,
是圓上動點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足![]()
(1)當(dāng)
在圓上運(yùn)動時,求點(diǎn)
的軌跡方程;
(2)若斜率為
的直線
與圓
相切,與(1)中所求點(diǎn)
的軌跡教育不同的兩點(diǎn)
是坐標(biāo)原點(diǎn),且
時,求
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com