| A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | -$\frac{1}{3}$ |
分析 由已知利用同角三角函數(shù)基本關系式可求cosα,tanα的值,進而利用兩角和的正切函數(shù)公式可求tan($\frac{π}{4}$+α)的值.
解答 解:∵α為鈍角,sinα=$\frac{2\sqrt{5}}{5}$,
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{\sqrt{5}}{5}$,tanα=$\frac{sinα}{cosα}$=-2,
∴tan($\frac{π}{4}$+α)=$\frac{tan\frac{π}{4}+tanα}{1-tan\frac{π}{4}tanα}$=$\frac{1+(-2)}{1-1×(-2)}$=-$\frac{1}{3}$.
故選:D.
點評 本題主要考查了同角三角函數(shù)基本關系式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | M∩N | B. | (∁UM)∩N | C. | M∩(∁UN) | D. | (∁UM)∪(∁UN) |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com