分析 (Ⅰ)連結(jié)B1C、AC,則N也是B1C的中點(diǎn),證明MN∥AC,利用線面平行的判定定理證明MN∥平面ABCD;
(Ⅱ)由${v_{{B_1}-{A_1}B{C_1}}}={v_{{A_1}-{B_1}BC}}_1$,求出B1到平面A1BC1的距離.
解答
(Ⅰ)證明:連結(jié)B1C、AC,則N也是B1C的中點(diǎn)
∴MN是△B1AC的中位線,即有MN∥AC…3
∵M(jìn)N?平面ABCD,AC?平面ABCD
∴MN∥平面ABCD…(5分)
(Ⅱ)解:△A1BC1是邊長(zhǎng)為$\sqrt{2}$的等邊三角形,∴${S_{△{A_1}BC{\;}_1}}=\frac{1}{2}×\sqrt{2}×\sqrt{2}×sin{60^0}=\frac{{\sqrt{3}}}{2}$…(7分)
設(shè)B1到平面A1BC1的距離為h,由${v_{{B_1}-{A_1}B{C_1}}}={v_{{A_1}-{B_1}BC}}_1$
得$\frac{1}{3}×\frac{{4\sqrt{3}h}}{4}=\frac{1}{3}×(1×1×\frac{1}{2})×1$,∴$h=\frac{{\sqrt{3}}}{3}$…(10分)
點(diǎn)評(píng) 本題考查線面平行的判定定理,考查B1到平面A1BC1的距離,考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,正確運(yùn)用線面平行的判定定理是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{3}{4}π$ | D. | $\frac{2}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | ($\frac{1}{4}$,+∞) | B. | (0,$\frac{1}{4}$) | C. | (-∞,$\frac{1}{4}$) | D. | (-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com