科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)復(fù)習(xí)(第2章 函數(shù)):2.8 一次函數(shù)、二次函數(shù)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆云南省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(
為實數(shù)).
(Ⅰ)當
時,求
的最小值;
(Ⅱ)若
在
上是單調(diào)函數(shù),求
的取值范圍.
【解析】第一問中由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
第二問![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.轉(zhuǎn)化后解決最值即可。
解:(Ⅰ) 由題意可知:
. ∵
∴
∴![]()
.
當
時,
;
當
時,
. 故
.
(Ⅱ) ![]()
.
當
時,
,在
上有
,
遞增,符合題意;
令
,則![]()
,∴
或
在
上恒成立.∵二次函數(shù)
的對稱軸為
,且![]()
∴
或![]()
或![]()
或![]()
或
. 綜上![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知冪函數(shù)
滿足
。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)
的解析式;
(2)對于(1)中的函數(shù)
,試判斷是否存在正數(shù)m,使函數(shù)
,在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)
滿足
,得到![]()
因為
,所以k=0,或k=1,故解析式為![]()
(2)由(1)知,
,
,因此拋物線開口向下,對稱軸方程為:
,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到![]()
(1)對于冪函數(shù)
滿足
,
因此
,解得
,………………3分
因為
,所以k=0,或k=1,當k=0時,
,
當k=1時,
,綜上所述,k的值為0或1,
。………………6分
(2)函數(shù)
,………………7分
由此要求
,因此拋物線開口向下,對稱軸方程為:
,
當
時,
,因為在區(qū)間
上的最大值為5,
所以
,或
…………………………………………10分
解得
滿足題意
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com