【題目】如圖所示,正方體
的棱長為
,
,
分別是棱
,
的中點,過直線
,
的平面分別與棱
,
交于
,
,設(shè)
,
,給出以下四個命題:
![]()
①四邊形
為平行四邊形;
②若四邊形
面積
,
,則
有最小值;
③若四棱錐
的體積
,
,則
是常函數(shù);
④若多面體
的體積
,
,則
為單調(diào)函數(shù).
其中假命題為( ).
A. ① B. ② C. ③ D. ④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)平面中,
的兩個頂點為
,平面內(nèi)兩點
、
同時滿足:①
;②
;③
.
(1)求頂點
的軌跡
的方程;
(2)過點
作兩條互相垂直的直線
,直線
與點
的軌跡
相交弦分別為
,設(shè)弦
的中點分別為
.
①求四邊形
的面積
的最小值;
②試問:直線
是否恒過一個定點?若過定點,請求出該定點,若不過定點,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了迎接世博會,某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費用是每日115元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得).
(1)求函數(shù)
的解析式及其定義域;
(2)試問當(dāng)每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
lnx-x+
,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
,且點
到橢圓C的兩焦點的距離之和為
.
![]()
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ) 若
,
是橢圓
上的兩個點,線段
的中垂線
的斜率為
,且直線
與
交于點
,求證:點
在直線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機(jī)構(gòu)為了了解各年齡層對高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在
內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為
,
,
,
,
,
).
![]()
(1)求選取的市民年齡在
內(nèi)的人數(shù);
(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再從中選取2人在座談會中作重點發(fā)言,求作重點發(fā)言的市民中至少有一人的年齡在
內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點,點
在線段
上.
![]()
(Ⅰ)求證:
;
(Ⅱ)試確定點
的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓
與圓
內(nèi)切,與圓
外切,記圓心
的軌跡為曲線
.
(1)求曲線
的方程.
(2)直線
與曲線
交于點
,
,點
為線段
的中點,若
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=![]()
(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)y=f(f(x))-1的零點個數(shù)為________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com