分析 由題意,$\frac{π}{2}$x+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,k∈Z,從而求定義域,周期T=$\frac{π}{\frac{π}{2}}=2$;由$-\frac{π}{2}+kπ<\frac{π}{2}x+\frac{π}{3}<\frac{π}{2}+kπ$可得單調(diào)增區(qū)間(k∈Z).
解答 解:∵y=tan($\frac{π}{2}$x+$\frac{π}{3}$),
∴$\frac{π}{2}$x+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,k∈Z;
故x≠2k+$\frac{1}{3}$,k∈Z;
故函數(shù)y=tan($\frac{π}{2}$x+$\frac{π}{3}$)的定義域為{x|x≠2k$+\frac{1}{3}$,k∈Z};
周期T=$\frac{π}{\frac{π}{2}}=2$;
由$-\frac{π}{2}+kπ<\frac{π}{2}x+\frac{π}{3}<\frac{π}{2}+kπ$可得:$2k-\frac{5}{3}$<x<$2k+\frac{1}{3}$,k∈Z.
∴單調(diào)增區(qū)間為($2k-\frac{5}{3}$,$2k+\frac{1}{3}$),(k∈Z).
點評 本題考查了正切函數(shù)的性質判斷,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | -$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 20個 | B. | 32個 | C. | 36個 | D. | 40個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com