(本題滿分16分)已知函數(shù)![]()
(1)求曲線
處的切線方程;
(2)求證函數(shù)
在區(qū)間[0,1]上存在唯一的極值點,并用二分法求函數(shù)取得極值時相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,
≈1.6,e0.3≈1.3)
(3)當
試求實數(shù)
的取值范圍.
解:(1)
,………………………………1分
又
,
處的切線方程為
………………………3分
(2)
,
……………………4分
令
,則
上單調(diào)遞增,
上存在唯一零點,
上存在唯一的極值點………6分
取區(qū)間
作為起始區(qū)間,用二分法逐次計算如下
| 區(qū)間中點坐標 | 中點對應(yīng)導數(shù)值 | 取區(qū)間 |
|
|
| 1 | ||
|
|
|
| 0.6 |
|
|
|
| 0.3 |
|
|
由上表可知區(qū)間
的長度為0.3,所以該區(qū)間的中點
,到區(qū)間端點距離小于0.2,因此可作為誤差不超過0.2的一個極值點的相應(yīng)x的值。
取得極值時,相應(yīng)
………………………9分
(3)由
,
即
,
,………………………………………12分
令
,
令
上單調(diào)遞增,
,因此
上單調(diào)遞增,則![]()
的取值范
…………………………16分
科目:高中數(shù)學 來源:2010-2011年江蘇省淮安市楚州中學高二上學期期末考試數(shù)學試卷 題型:解答題
(本題滿分16分)
已知函數(shù)
,且對任意
,有
.
(1)求
;
(2)已知
在區(qū)間(0,1)上為單調(diào)函數(shù),求實
數(shù)
的取值范圍.
(3)討論函數(shù)
的零點個數(shù)?(提示
:
)
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省高三10月階段性測試理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)
為實常數(shù)).
(I)當
時,求函數(shù)
在
上的最小值;
(Ⅱ)若方程
在區(qū)間
上有解,求實數(shù)
的取值范圍;
(Ⅲ)證明:![]()
(參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省高二下期中理科數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓
:
的離心率為
,
分別為橢圓
的左、右焦點,若橢圓
的焦距為2.
⑴求橢圓
的方程;
⑵設(shè)
為橢圓上任意一點,以
為圓心,
為半徑作圓
,當圓
與橢圓的右準線
有公共點時,求△
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江蘇省高一上學期期中考試數(shù)學試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)
是定義在
上的偶函數(shù),且當
時,
。
(Ⅰ)求
及
的值;
(Ⅱ)求函數(shù)
在
上的解析式;
(Ⅲ)若關(guān)于
的方程
有四個不同的實數(shù)解,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省2009-2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com