欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.已知偶函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,則滿足f(2x-1)<f(2)的x的取值范圍是( 。
A.$({-\frac{1}{2},\frac{2}{3}})$B.$({-\frac{1}{2},\frac{3}{2}})$C.$({-\frac{1}{2},\frac{1}{3}})$D.$({\frac{1}{2},2})$

分析 根據(jù)f(x)是偶函數(shù),可得f(2x-1)=f(|2x-1|),從而將f(2x-1)<f(3)轉(zhuǎn)化成f(|2x-1|)<f(2),然后根據(jù)函數(shù)的單調(diào)性建立關(guān)系式|2x-1|<2,解之即可.

解答 解:根據(jù)題意,f(x)是偶函數(shù),則f(2x-1)=f(|2x-1|),
又由函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增,
則f(2x-1)<f(2)⇒f(|2x-1|)<f(2)⇒|2x-1|<2,
即-2<2x-1<2,
解可得-$\frac{1}{2}$<x<$\frac{3}{2}$;
即(-$\frac{1}{2}$,$\frac{3}{2}$);
故選:B.

點(diǎn)評 本題考查函數(shù)的奇偶性與單調(diào)性的綜合應(yīng)用,涉及絕對值不等式的解法,關(guān)鍵是將f(2x-1)<f(2)轉(zhuǎn)化成|2x-1|<2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=$\frac{1}{2}$,Sn=n2an,求其通項(xiàng)an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)實(shí)二次函數(shù)f(x)=ax2+bx+c,a>0,己知有三個(gè)互不相同的整數(shù)n1,n2,n3使得|f(ni)|≤100,i=1,2,3,求證:
(1)存在實(shí)數(shù)x0,滿足:|f(x0)|≤100且|f(x0+1)|≤100.
(2)a≤200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.分形幾何學(xué)是美籍法國數(shù)學(xué)家伯努瓦•B•曼德爾布羅特(Benoit B.Mandelbrot)在20世紀(jì)70年代創(chuàng)立的一門新學(xué)科,它的創(chuàng)立,為解決傳統(tǒng)科學(xué)眾多領(lǐng)域的難題提供了全新的思路.右圖按照的分形規(guī)律生長成一個(gè)樹形圖,則第13行的實(shí)心圓點(diǎn)的個(gè)數(shù)是( 。
A.55個(gè)B.89個(gè)C.144個(gè)D.233個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=2sin(4x-\frac{π}{6})+1$的最小正周期為( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\frac{1}{a}$<$\frac{1}$<0,則下列結(jié)論錯(cuò)誤的是( 。
A.lg(a2)<lg(ab)B.a2<b2C.a3>b3D.ab>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.i是虛數(shù)單位,(i+1)(i+2)=( 。
A.1+3iB.1-3iC.-1+3iD.-1-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 $A({cos^2}x,sinx),B(1,cosx),設(shè)f(x)=\overrightarrow{OA}•\overrightarrow{OB},O為坐標(biāo)原點(diǎn)$,
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng)$x∈[{-\frac{π}{2},\frac{π}{2}}]$時(shí),求函數(shù)的單調(diào)增區(qū)間和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,以向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$為邊作?AOBD,又$\overrightarrow{BM}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{CN}$=$\frac{1}{3}$$\overrightarrow{CD}$,用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OM}$、$\overrightarrow{ON}$、$\overrightarrow{MN}$.

查看答案和解析>>

同步練習(xí)冊答案