| A. | (-∞,-1)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (1,+∞) | D. | (-1,0)∪(1,+∞) |
分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{x}$,求函數(shù)的導(dǎo)數(shù),判斷函數(shù)g(x)的單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化即可.
解答 解:設(shè)g(x)=$\frac{f(x)}{x}$,
則g′(x)=[$\frac{f(x)}{x}$]′=$\frac{xf′(x)-f(x)}{{x}^{2}}$>0,即x>0時(shí) $\frac{f(x)}{x}$是增函數(shù),
當(dāng)x>1時(shí),g(x)>g(1)=0,此時(shí)f(x)>0;
0<x<1時(shí),g(x)<g(1)=0,此時(shí)f(x)<0.
又f(x)是奇函數(shù),所以-1<x<0時(shí),f(x)=-f(-x)>0;
x<-1時(shí)f(x)=-f(-x)<0.
則不等式x•f(x)>0等價(jià)為$\left\{\begin{array}{l}{x>0}\\{f(x)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>0}\\{x>1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{x<-1}\end{array}\right.$,
即x>1或x<-1,
則不等式xf(x)>0的解集是(-∞,-1)∪(1,+∞),
故選:A
點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性與奇偶性的應(yīng)用.在判斷函數(shù)的單調(diào)性時(shí),?衫脤(dǎo)函數(shù)來(lái)判斷.構(gòu)造函數(shù)函數(shù)解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| x | |||||
| 2x | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| f(x)=2sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | [-2,0] | B. | [0,2] | C. | [-2,2] | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1 | C. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{2}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com