分析 (1)由條件利用三角恒等變換化簡(jiǎn)函數(shù)的解析式,再利用正弦函數(shù)的周期性得出結(jié)論.
(2)由條件利用正弦函數(shù)的單調(diào)性求得f(x)在區(qū)間[0,$\frac{π}{2}$]上的單調(diào)區(qū)間,再利用定義域和值域求得f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.
解答 解:(1)函數(shù)f(x)=-$\sqrt{2}$sin(2x+$\frac{π}{4}$)+(2+4$\sqrt{3}$)sinxcosx-2cos2 x+1
=-$\sqrt{2}$sin2xcos$\frac{π}{4}$-$\sqrt{2}$cos2xsin$\frac{π}{4}$+(1+2$\sqrt{3}$)sin2x-cos2x
=2$\sqrt{3}$sin2x-2cos2x=4sin(2x-$\frac{π}{6}$),
故f(x)的最小正周期為$\frac{2π}{2}$=π.
(2)令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得 kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
故函數(shù)在區(qū)間[0,$\frac{π}{2}$]上的增區(qū)間為[0,$\frac{π}{3}$].
由x∈[0,$\frac{π}{2}$],可得2x-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
故當(dāng)2x-$\frac{π}{6}$=-$\frac{π}{6}$時(shí),函數(shù)f(x)=4sin(2x-$\frac{π}{6}$)求得最小值為-2;
當(dāng)2x-$\frac{π}{6}$=$\frac{π}{2}$時(shí),函數(shù)f(x)=4sin(2x-$\frac{π}{6}$)求得最大值為4.
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,定義域和值域,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 單調(diào)遞增 | B. | 單調(diào)遞減 | C. | 先增后減 | D. | 先減后增 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com