設(shè)
,
,且
、
夾角為
,則
等于( )
A.
B.
C.
D.![]()
科目:高中數(shù)學(xué) 來源: 題型:
| a |
| b |
| c |
| a |
| b |
| c |
| 0 |
| a |
| b |
| c |
| a |
| b |
| b |
| c |
| a |
| c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| AB |
| AC |
| AB |
| AC |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012學(xué)年浙江省杭州七校高一第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題
在
中,滿足
,
是
邊上的一點.
(Ⅰ)若
,求向量
與向量
夾角的正弦值;
(Ⅱ)若
,
=m (m為正常數(shù)) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一問中,利用向量的數(shù)量積設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求
第二問因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
(2)當(dāng)
時,則
=![]()
第三問中,解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而![]()
運用三角函數(shù)求解。
(Ⅰ)解:設(shè)向量
與向量
的夾角為
,則![]()
令
=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為
,
=m所以
,![]()
(1)當(dāng)
時,則
=
;-2分
(2)當(dāng)
時,則
=
;--2分
(Ⅲ)解:設(shè)
,因為![]()
,
;
所以
即
于是
得![]()
從而
---2分
=
=![]()
=
…………………………………2分
令
,
則
,則函數(shù)
,在
遞減,在
上遞增,所以
從而當(dāng)
時,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕頭四中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com