如圖,設(shè)橢圓
的左右焦點(diǎn)為
,上頂點(diǎn)為
,點(diǎn)
關(guān)于
對(duì)稱,且![]()
(1)求橢圓
的離心率;
(2)已知
是過
三點(diǎn)的圓上的點(diǎn),若
的面積為
,求點(diǎn)
到直線
距離的最大值。![]()
(1)
;(2)4.
解析試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、勾股定理、點(diǎn)到直線的距離、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,先通過對(duì)稱性得到B點(diǎn)坐標(biāo),利用兩點(diǎn)間距離公式得
的3個(gè)邊長,利用勾股定理列出關(guān)系式,化簡出離心率e的值;第二問,利用第一問知
是邊長為a的正三角形,利用三角形面積,得到a的值,從而得到b和c的值,由于
,所以圓是以
為圓心,
為半徑,則可直接寫出圓的方程,因?yàn)辄c(diǎn)p到直線的最大距離為圓心到直線的距離加上半徑,所以利用點(diǎn)到直線的距離公式計(jì)算即可.
試題解析:(1)![]()
由
及勾股定理可知
,即![]()
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a9/4/1x8iy3.png" style="vertical-align:middle;" />,所以
,解得![]()
(2)由(1)可知
是邊長為
的正三角形,所以![]()
解得![]()
由
可知直角三角形
的外接圓以
為圓心,半徑![]()
即點(diǎn)
在圓
上,
因?yàn)閳A心
到直線
的距離為![]()
故該圓與直線
相切,所以點(diǎn)
到直線
的最大距離為![]()
考點(diǎn):橢圓的標(biāo)準(zhǔn)方程、勾股定理、點(diǎn)到直線的距離、直線與圓的位置關(guān)系.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:
的焦點(diǎn)為F,
ABQ的三個(gè)頂點(diǎn)都在拋物線C上,點(diǎn)M為AB的中點(diǎn),
.(1)若M
,求拋物線C方程;(2)若
的常數(shù),試求線段
長的最大值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的左,右兩個(gè)頂點(diǎn)分別為
、
.曲線
是以
、
兩點(diǎn)為頂點(diǎn),離心率為
的雙曲線.設(shè)點(diǎn)
在第一象限且在曲線
上,直線
與橢圓相交于另一點(diǎn)
.
(1)求曲線
的方程;
(2)設(shè)
、
兩點(diǎn)的橫坐標(biāo)分別為
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
的短軸長為
,且斜率為
的直線
過橢圓
的焦點(diǎn)及點(diǎn)
.
(1)求橢圓
的方程;
(2)已知直線
過橢圓
的左焦點(diǎn)
,交橢圓于點(diǎn)P、Q.
(ⅰ)若滿足
(
為坐標(biāo)原點(diǎn)),求
的面積;
(ⅱ)若直線
與兩坐標(biāo)軸都不垂直,點(diǎn)
在
軸上,且使
為
的一條角平分線,則稱點(diǎn)
為橢圓
的“特征點(diǎn)”,求橢圓
的特征點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的周長為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).
(1)求動(dòng)點(diǎn)C的軌跡E的方程;
(2)過原點(diǎn)作兩條關(guān)于y軸對(duì)稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)A,B分別為橢圓
+
=1(a>b>0)的左、右頂點(diǎn),(1,)為橢圓上一點(diǎn),橢圓長半軸長等于焦距.
(1)求橢圓的方程;
(2)設(shè)P(4,x)(x≠0),若直線AP,BP分別與橢圓相交于異于A,B的點(diǎn)M,N,求證:∠MBN為鈍角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知線段
,
的中點(diǎn)為
,動(dòng)點(diǎn)
滿足
(
為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)
所在的曲線方程;
(2)若
,動(dòng)點(diǎn)
滿足
,且
,試求
面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
:
.
(1)求橢圓
的離心率;
(2)設(shè)
為原點(diǎn),若點(diǎn)
在橢圓
上,點(diǎn)
在直線
上,且
,試判斷直線
與圓
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)拋物線
的準(zhǔn)線與x軸交于點(diǎn)Q,若過點(diǎn)Q的直線
與拋物線有公共點(diǎn),則直線
的斜率的取值范圍是
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com