分析:(Ⅰ)先由
an+1=-求得a
2,再由
bn=可求得b
1,b
2,由
bn=可得b
n+1與b
n的遞推式,由該遞推式可構(gòu)造等比數(shù)列{b
n+1},從而可求得b
n+1,進(jìn)而得到b
n;
(Ⅱ)由
=,知n≥2時(shí),
==<,據(jù)此對(duì)不等式進(jìn)行放縮可證明,注意檢驗(yàn)n=1時(shí)情形;
解答:解:(Ⅰ)∵a
1=-2,∴
a2=-=-
=-
,
∴b
1=
=
=1,b
2=
=
=3,
∵
bn+1====1+=2bn+1,
∴b
n+1+1=2(b
n+1),
于是{b
n+1}是以b
1+1=2為首項(xiàng),2為公比的等比數(shù)列,
故
bn+1=2×2n-1=2
n,即
bn=2n-1;
(Ⅱ)∵
=,
∴當(dāng)n≥2時(shí),
==<,
∴
| n |
 |
| k=1 |
<1+++…+=
1+=
2-()n-1<2;
n=1時(shí),
=1<2成立,
∴
| n |
 |
| k=1 |
<2.
點(diǎn)評(píng):本題考查數(shù)列遞推式求數(shù)列通項(xiàng)、數(shù)列與不等式,考查學(xué)生分析解決問(wèn)題的能力,解決(Ⅱ)問(wèn)的關(guān)鍵是利用放縮對(duì)數(shù)列進(jìn)行求和.