欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

18.已知雙曲線的$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}=1$的一條漸近線為2x+y=0,則該雙曲線的離心率等于( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\sqrt{5}$D.$\sqrt{6}$

分析 求得雙曲線的漸近線方程,由題意可得a=2b,運用a,b,c的關(guān)系和離心率公式,計算即可得到所求值.

解答 解:雙曲線$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}=1$的漸近線方程為y=±$\frac{a}$x,
由一條漸近線為2x+y=0,可得$\frac{a}$=2,
即a=2b,c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{5}}{2}$a,
可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$.
故選:A.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的漸近線方程,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,角A、B、C所對的邊分別為a、b、c,且滿足cos2B+$\frac{\sqrt{3}}{2}$sin2B=1,0<B<$\frac{π}{2}$,若b=3,則a+c的取值范圍為(3,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)雙曲線$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}$=1的一條漸近線為y=-2x,且一個焦點與拋物線x2=4y的焦點相同,則此雙曲線的方程為( 。
A.$\frac{5}{4}$x2-5y2=1B.5y2-$\frac{5}{4}$x2=1C.$\frac{5}{4}$y2-5x2=1D.5x2-$\frac{5}{4}$y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對任意實數(shù)$x,y,z,\sqrt{{x^2}+{y^2}+{z^2}}+\sqrt{{{(x+\sqrt{2})}^2}+{{(y-5)}^2}+{{(z-3)}^2}}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某班共有15人參加數(shù)學(xué)和物理課外興趣小組,其中只參加數(shù)學(xué)興趣小組的有5人,兩個小組都參加的有4人,則只參加物理興趣小組的有6人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,AB是圓O的直徑,C是半徑OB的中點,D是OB延長線上一點,且BD=OB,直線MD與圓O相交于點M,T(不與A,B重合),DN與圓O相切于點N,連結(jié)MC,MB,OT
(1)求證:$\frac{DT}{DO}=\frac{DC}{DM}$;
(2)若∠BMC=40°,試求∠DOT的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線實軸長為6,一條漸近線方程為4x-3y=0.過雙曲線的右焦點F作傾斜角為$\frac{π}{4}$的直線交雙曲線于A、B兩點
(1)求雙曲線的方程;
(2)求線段AB的中點C到焦點F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$的左右焦點分別為F1,F(xiàn)2,O為坐標(biāo)原點,P為雙曲線右支上一點,△F1PF2的內(nèi)切圓的圓心為Q,過F2作PQ的垂線,垂足為B,則OB的長度為( 。
A.$\sqrt{7}$B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在四棱錐P-ABCD中,PA⊥底面ABCD,AB=AD=2,CB=CD=$\sqrt{7}$,∠BAD=120°,點E在線段AC上,且AE=2EC,F(xiàn)為線段PC的中點.
(1)求證:EF∥平面PBD;
(2)若二面角B-PC-D的平面角的余弦值為$\frac{1}{5}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊答案