【題目】已知拋物線
與過點
的直線
交于
兩點.
(1)若
,求直線
的方程;
(2)若
,
軸,垂足為
,探究:以
為直徑的圓是否過定點?若是,求出該定點的坐標;若不是,請說明理由.
【答案】(1)
或
;(2)過定點,![]()
【解析】
(1)設(shè)出直線
的方程
,聯(lián)立直線與拋物線方程,利用根與系數(shù)的關(guān)系及弦長公式計算即可;
(2)設(shè)以
為直徑的圓經(jīng)過點
,
,
,利用
得
,令
解方程組即可.
(1)由題可知,直線
的斜率不為0,設(shè)其方程為
,
將
代入
,消去
可得
,
顯然
,設(shè)
,
,則
,
,
所以
,
因為
,所以
,解得
,
所以直線
的方程為
或
.
(2)因為
,所以
是線段
的中點,
設(shè)
,則由(1)可得
,
,
所以
,又
軸,垂足為
,所以
,
設(shè)以
為直徑的圓經(jīng)過點
,則
,
,
所以
,即
,
化簡可得
①,
令
,可得
,
所以當
,
時,對任意的
,①式恒成立,
所以以
為直徑的圓過定點,該定點的坐標為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,
、
為橢圓的左、右焦點,
為橢圓上一點,且
.
(1)求橢圓的標準方程;
(2)設(shè)直線
,過點
的直線交橢圓于
、
兩點,線段
的垂直平分線分別交直線
、直線
于
、
兩點,當
最小時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解戶籍性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為
的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)民戶籍各
人;男性
人,女性
人.繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應(yīng)比例,則下列敘述中錯誤的是( )
![]()
A.是否傾向選擇生育二胎與戶籍有關(guān)
B.是否傾向選擇生育二胎與性別無關(guān)
C.傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同
D.傾向選擇不生育二胎的人員中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形
是菱形,四邊形
是矩形,平面
平面
,
,
,
,
為
的中點,
為線段
上的一點.
![]()
(1)求證:
;
(2)若二面角
的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,右頂點為
,右焦點為
,
為坐標原點,
,橢圓
過點
.
(1)求橢圓
的方程;
(2)若過點
的直線
與橢圓
交于不同的兩點
(
在
之間),求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4 — 4:坐標系與參數(shù)方程
在直角坐標系
中,直線
的參數(shù)方程為
(
為參數(shù)),以原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(
).
(1)分別寫出直線
的普通方程與曲線
的直角坐標方程;
(2)已知點
,直線
與曲線
相交于
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.
![]()
(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.
附注:參考數(shù)據(jù):
參考公式:相關(guān)系數(shù)
,若r>0.95,則y與x的線性相關(guān)程度相當高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程
中斜率與截距的最小二乘估計公式分別為
=
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點為
.直線
被稱作為橢圓
的一條準線.點
在橢圓
上(異于橢圓左、右頂點),過點
作直線
與橢圓
相切,且與直線
相交于點
.
(1)求證:
.
(2)若點
在
軸的上方,
,求
面積的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com