解:(Ⅰ)①∵
,定義域?yàn)椋?,+∞)
∴![]()
∵f(x)在
處取得極值,
∴![]()
即
,
所以所求a,b值均為![]()
②在
存在x0,使得不等式f(x0)﹣c≤0成立,則只需c≥[f(x)]min
由![]()
∴當(dāng)
時(shí),f'(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)
時(shí),f'(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈[1,2]時(shí),f'(x)<0,函數(shù)f(x)單調(diào)遞減,
∴f(x)在
處有極小值
而![]()
又
,
因
,
∴
,
∴
,
故
.
(Ⅱ)當(dāng) a=b 時(shí),![]()
①當(dāng)a=0時(shí),f(x)=lnx,則f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)a>0時(shí),∵x>0,∴2ax2+x+a>0,
∴f'(x)>0,則f(x)在(0,+∞)上單調(diào)遞增;
③當(dāng)a<0時(shí),設(shè)g(x)=2ax2+x+a,只需△≤0,
從而得
,此時(shí)f(x)在(0,+∞)上單調(diào)遞減;
綜上可得,
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省省城名校高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:寧夏回族自治區(qū)月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年廣東省汕頭市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)預(yù)測(cè)試卷(押題卷1)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年四川省攀枝花市高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com