已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
對定義域每的任意
恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:對于任意正整數(shù)
,不等式
恒成立。
.
。
(Ⅰ)當(dāng)
時,若
,則
,若
,則
,故此時函數(shù)
的單調(diào)遞減區(qū)間是
,單調(diào)遞增區(qū)間是
;
當(dāng)
時,
的變化情況如下表:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
所以函數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
;
當(dāng)
時,
,函數(shù)
的單調(diào)遞增區(qū)間是
;
當(dāng)
時,同
可得,函數(shù)
的單調(diào)遞增區(qū)間是
,單調(diào)遞減區(qū)間是
。
(Ⅱ)由于
,顯然當(dāng)
時,
,此時
對定義域每的任意
不是恒成立的,
當(dāng)
時,根據(jù)(1),函數(shù)
在區(qū)間
的極小值、也是最小值即是
,此時只要
即可,解得
,故得實(shí)數(shù)
的取值范圍是
。
(Ⅲ)當(dāng)
時,
,等號當(dāng)且僅當(dāng)
成立,這個不等式即
,當(dāng)
時,可以變換為
,
在上面不等式中分別令
,
![]()
所以
【解析】略
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 2 |
| 3 |
| 1 |
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)![]()
.
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若對任意
,函數(shù)
在
上都有三個零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題
(本小題滿分
分)
已知函數(shù)
.
(1)求函數(shù)
的最大值;
(2)在
中,
,角
滿足
,求
的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com