在如圖所示的幾何體中,四邊形
均為全等的直角梯形,且
,
.![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值.
(Ⅰ)證明過(guò)程詳見(jiàn)解析;(Ⅱ)
.
解析試題分析:本題考查線面平行的判定以及二面角的求法.線面平行的判斷:①判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;②性質(zhì):如果兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面;③性質(zhì):如果兩條平行線中的一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面或在這個(gè)平面內(nèi);④性質(zhì):如果一條直線平行于兩個(gè)平行平面中的一個(gè),那么這條直線也平行于另一個(gè)平面或在這個(gè)平面內(nèi);⑤性質(zhì):如果一個(gè)平面和平面外的一條直線都垂直于同一平面,那么這條直線和這個(gè)平面平行.第一問(wèn)是利用線面平行的判定定理證明;第二問(wèn)建立空間直角坐標(biāo)系是關(guān)鍵,利用向量法得到平面
的一個(gè)法向量為
,和平面
的一個(gè)法向量為
,再利用夾角公式求夾角的余弦,但是需判斷夾角是銳角還是鈍角,進(jìn)一步判斷余弦值的正負(fù).
試題解析:(Ⅰ)連結(jié)
,由題意,可知
,
故四邊形
是平行四邊形,所以
.
又
平面
,
平面
,
所以
平面
. 5分![]()
(Ⅱ)由題意,
兩兩垂直,
以
為
軸,
為
軸建立空間直角坐標(biāo)系
.
設(shè)
,則
,
,
,
.
設(shè)平面
的一個(gè)法向量為
,
則
,
,
又
,
,
所以
,取
.
同理,得平面
的一個(gè)法向量為
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0c/c/1o78p4.png" style="vertical-align:middle;" />,又二面角
為鈍角,
所以二面角
的余弦值
. 12分
考點(diǎn):1.線面平行的判斷定理;2.向量法解題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB=2PD.![]()
(1)證明:平面PQC⊥平面DCQ;
(2)求二面角D—PQ—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知直角梯形
,
是
邊上的中點(diǎn)(如圖甲),
,
,
,將
沿
折到
的位置,使
,點(diǎn)
在
上,且
(如圖乙)![]()
(Ⅰ)求證:
平面ABCD.
(Ⅱ)求二面角E?AC?D的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面
是矩形,
底面
,
是
的中點(diǎn),已知
,
,
,![]()
求:(Ⅰ)三角形
的面積;(II)三棱錐
的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,底面
為菱形,
,
為
的中點(diǎn)。![]()
(1)若
,求證:平面
;
(2)點(diǎn)
在線段
上,
,試確定
的值,使
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,曲線
在
處的切線過(guò)點(diǎn)
.
(Ⅰ)求函數(shù)
的解析式;
(Ⅱ)當(dāng)
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱
中,
是
上的點(diǎn)且
為
中
邊上的高.
(Ⅰ)求證:
平面
;
(Ⅱ)求證:
;
(Ⅲ)線段
上是否存在點(diǎn)
,使
平面
?說(shuō)明理由.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com