分析 (1)由條件利用同角三角函數(shù)的基本關(guān)系,求得 sinθcosθ 的值.
(2)分類討論,根據(jù)sinθ+cosθ=±$\sqrt{{(sinθ+cosθ)}^{2}}$,計(jì)算求的結(jié)果.
(3)由條件利用立方差公式以及(1)、(2)的結(jié)論,計(jì)算求的結(jié)果.
解答 解:(1)由于tanθ+cotθ=2=$\frac{sinθ}{cosθ}$+$\frac{cosθ}{sinθ}$=$\frac{1}{sinθcosθ}$,∴sinθcosθ=$\frac{1}{2}$.
(2)由(1)可得sinθ、cosθ同號(hào),故角θ是第一或第三象限角,
當(dāng)θ是第一象限角,sinθ+cosθ=$\sqrt{{(sinθ+cosθ)}^{2}}$=$\sqrt{1+2sinθcosθ}$=$\sqrt{1+1}$=$\sqrt{2}$;
當(dāng)θ是第三象限角sinθ+cosθ=-$\sqrt{{(sinθ+cosθ)}^{2}}$=-$\sqrt{1+2sinθcosθ}$=-$\sqrt{1+1}$=-$\sqrt{2}$.
(3)當(dāng)θ是第一象限角時(shí),sin3θ+cos3θ=(sinθ+cosθ)(1-sinθcosθ)=$\sqrt{2}$(1-$\frac{1}{2}$)=$\frac{\sqrt{2}}{2}$;
當(dāng)θ是第三象限角時(shí),sin3θ+cos3θ=(sinθ+cosθ)(1-sinθcosθ)=$\sqrt{2}$(1-$\frac{1}{2}$)=-$\frac{\sqrt{2}}{2}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | -1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,$\frac{π}{2}$) | B. | ($\frac{π}{2}$,π) | C. | (π,$\frac{3π}{2}$) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (0,4) | B. | (0,5) | C. | (1,4) | D. | (1,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com