【題目】某縣共有90間農(nóng)村淘寶服務站,隨機抽取5間,統(tǒng)計元旦期間的網(wǎng)購金額(單位:萬元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).
(1)根據(jù)莖葉圖計算樣本均值;
(2)若網(wǎng)購金額(單位:萬元)不小于18的服務站定義為優(yōu)秀服務站,其余為非優(yōu)秀服務站.根據(jù)莖葉圖推斷90間服務站中有幾間優(yōu)秀服務站?
(3)從隨機抽取的5間服務站中再任取2間作網(wǎng)購商品的調(diào)查,求恰有1間是優(yōu)秀服務站的概率.
![]()
【答案】(1)12;(2)36;(3)
.
【解析】分析:(1)直接利用平均值公式求解即可;(2)根據(jù)樣本中優(yōu)秀服務站的頻率估計總體中優(yōu)秀服務站的頻率,從而可得結(jié)果;(3)利用列舉法可得隨機抽取的5間服務站中任取2間的可能性共有
種,其中其中恰有1間是優(yōu)秀服務站的情況有
種,由古典概型概率公式可得結(jié)果.
詳解:(1)樣本均值![]()
(2)樣本中優(yōu)秀服務站為2間,頻率為
,由此估計90間服務站中有
間優(yōu)秀服務站;
(3)由于樣本中優(yōu)秀服務站為2間,記為
,非優(yōu)秀服務站為3間,記為
,從隨機抽取的5間服務站中任取2間的可能性有![]()
共10種情況,其中恰有1間是優(yōu)秀服務站的情況為
6種情況,故所求概率為
.
科目:高中數(shù)學 來源: 題型:
【題目】某高三理科班共有60名同學參加某次考試,從中隨機挑選出5名同學,他們的數(shù)學成績
與物理成績
如下表:
數(shù)學成績 | 145 | 130 | 120 | 105 | 100 |
物理成績 | 110 | 90 | 102 | 78 | 70 |
數(shù)據(jù)表明
與
之間有較強的線性關(guān)系.
(I)求
關(guān)于
的線性回歸方程;
(II)該班一名同學的數(shù)學成績?yōu)?10分,利用(I)中的回歸方程,估計該同學的物理成績;
(III)本次考試中,規(guī)定數(shù)學成績達到125分為優(yōu)秀,物理成績達到100分為優(yōu)秀. 若
該班數(shù)學優(yōu)秀率與物理優(yōu)秀率分別為50%和60%,且除去抽走的5名同學外,剩下的同學中數(shù)學優(yōu)秀但物理不優(yōu)秀的同學共有5人,在答卷頁上填寫下面2×2列聯(lián)表,判斷能否在犯錯誤的概率不超過0.01的前提下認為數(shù)學優(yōu)秀與物理優(yōu)秀有關(guān)?
物理優(yōu)秀 | 物理不優(yōu)秀 | 合計 | |
數(shù)學優(yōu)秀 | |||
數(shù)學不優(yōu)秀 | |||
合計 | 60 |
參考數(shù)據(jù):回歸直線的系數(shù)![]()
,
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】進入21世紀以來,南康區(qū)家具產(chǎn)業(yè)快速發(fā)展,為廣大市民提供了數(shù)十萬就業(yè)崗位,提高了廣大市民的收入,也帶動南康和周邊縣市的經(jīng)濟快速發(fā)展.同時,由于生產(chǎn)設備相對落后,生產(chǎn)過程中產(chǎn)生大量粉塵、廢氣,給人們的健康、交通安全等帶來了嚴重影響.經(jīng)研究發(fā)現(xiàn),工業(yè)廢氣、粉塵等污染物排放是霧霾形成和持續(xù)的重要原因,治理污染刻不容緩.為此,某工廠新購置并安裝了先進的廢氣、粉塵處理設備,使產(chǎn)生的廢氣、粉塵經(jīng)過過濾后再排放,以降低對空氣的污染.已知過濾過程中廢氣粉塵污染物的數(shù)量
(單位:
)與過濾時間
(單位:
)間的關(guān)系為![]()
(
均為非零常數(shù),
為自然對數(shù)的底數(shù))其中
為
時的污染物數(shù)量.若過濾
后還剩余
的污染物.
(1)求常數(shù)
的值.
(2)試計算污染物減少到
至少需要多長時間(精確到
.參考數(shù)據(jù):
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
為橢圓
的左、右頂點,
為其右焦點,
是橢圓
上異于
的動點,且
面積的最大值為
.
(1)求橢圓
的方程;
(2)直線
與橢圓在點
處的切線交于點
,當點
在橢圓上運動時,求證:以
為直徑的圓與直線
恒相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直四棱柱
的底面是直角梯形,
,
,
、
分別是棱
、
上的動點,且
,
,
,
.
![]()
(1)證明:無論點
怎樣運動,四邊形
都為矩形;
(2)當
時,求幾何體
的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,其中
.
(1)若函數(shù)
在
處取得極值,求實數(shù)
的值;
(2)在(1)的結(jié)論下,若關(guān)于
的不等式
,當
時恒成立,求
的值;
(3)令
,若關(guān)于
的方程
在
內(nèi)至少有兩個解,求出實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用1個單位量的水可洗掉蔬菜上殘留農(nóng)藥量的
,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設用
單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
.
(1)試規(guī)定
的值,并解釋其實際意義;
(2)試根據(jù)假定寫出函數(shù)
應該滿足的條件和具有的性質(zhì);
(3)設
.現(xiàn)有
單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次,試問用哪種方案清洗后蔬菜上殘留的農(nóng)藥量比較省?說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com