【題目】設(shè)x,y滿足不等式組
,若z=ax+y的最大值為2a+4,最小值為a+1,則實(shí)數(shù)a的取值范圍為 .
【答案】[﹣2,1]
【解析】解:由z=ax+y得y=﹣ax+z,直線y=﹣ax+z是斜率為﹣a,y軸上的截距為z的直線, 作出不等式組對應(yīng)的平面區(qū)域如圖:
則A(1,1),B(2,4),
∵z=ax+y的最大值為2a+4,最小值為a+1,
∴直線z=ax+y過點(diǎn)B時(shí),取得最大值為2a+4,
經(jīng)過點(diǎn)A時(shí)取得最小值為a+1,
若a=0,則y=z,此時(shí)滿足條件,
若a>0,則目標(biāo)函數(shù)斜率k=﹣a<0,
要使目標(biāo)函數(shù)在A處取得最小值,在B處取得最大值,
則目標(biāo)函數(shù)的斜率滿足﹣a≥kBC=﹣1,
即0<a≤1,
若a<0,則目標(biāo)函數(shù)斜率k=﹣a>0,
要使目標(biāo)函數(shù)在A處取得最小值,在B處取得最大值,
則目標(biāo)函數(shù)的斜率滿足﹣a≤kAC=2,
即﹣2≤a<0,
綜上﹣2≤a≤1,
所以答案是:[﹣2,1].![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的準(zhǔn)線方程為
,點(diǎn)
為坐標(biāo)原點(diǎn),不過點(diǎn)
的直線
與拋物線
交于不同的兩點(diǎn)
.
(1)如果直線
過點(diǎn)
,求證:
;
(2)如果
,證明:直線
必過一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1﹣x),f(﹣
)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某幾何體的正視圖與側(cè)視圖都是邊長為1的正方形,且體積為
.則該幾何體的俯視圖可以是( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=
,其中
=(2cosx,﹣
sin2x),
=(cosx,1)(x∈R).
(1)求f(x)的周期和單調(diào)遞減區(qū)間;
(2)在△ABC 中,角A、B、C的對邊分別為a,b,c,f(A)=﹣1,a=
,
=3,求邊長b和c的值(b>c).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學(xué)生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為
等,小于80分者為
等.
![]()
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從
等和
等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從
等和
等中分別抽幾人?
(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是
等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學(xué)生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為
等,小于80分者為
等.
![]()
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從
等和
等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從
等和
等中分別抽幾人?
(3)在(2)問的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是
等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(n)=1+
+
+…+
(n∈N*),計(jì)算得f(2)=
,f(4)>2,f(8)>
,f(16)>3,f(32)>
,由此推算:當(dāng)n≥2時(shí),有( )
A.f(2n)>
(n∈N*)
B.f(2n)>
(n∈N*)
C.f(2n)>
(n∈N*)
D.f(2n)>
(n∈N*)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com