欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=x2+|x-a|+1,(x∈R).
(1)畫出a=0時(shí)函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)的最小值.
分析:(1)判定函數(shù)的奇偶性,然后根據(jù)奇偶性圖象的性質(zhì)畫出圖象即可;
(2)討論x去掉絕對(duì)值,然后利用二次函數(shù)的性質(zhì),討論對(duì)稱軸可求出函數(shù)的最小值即可.
解答:解:(1)當(dāng)a=0時(shí),f(x)=x2+|x|+1,是偶函數(shù),圖象關(guān)于y軸對(duì)稱

(2)①當(dāng)x<a時(shí),f(x)=x2-x+a+1=(x-
1
2
2+a+
3
4

若a≤
1
2
,則函數(shù)f(x)在(-∞,a]上單調(diào)遞減,從而函數(shù)f(x)在(-∞,a]上的最小值為f(a)=a2+1;
若a>
1
2
,則函數(shù)f(x)在(-∞,a]上的最小值為f(
1
2
)=a+
3
4

②當(dāng)x≥a時(shí),f(x)=x2+x-a+1=(x+
1
2
2-a+
3
4

若a≤-
1
2
,則函數(shù)f(x)在[a,+∞)上的最小值為f(-
1
2
)=-a+
3
4
且f(-
1
2
)≤f(a)
若a>-
1
2
,則函數(shù)f(x)在[a,+∞)上單調(diào)遞增,從而函數(shù)f(x)在[a,+∞)上的最小值為f(a)=a2+1
綜上,當(dāng)a≤-
1
2
時(shí),函數(shù)f(x)的最小值為-a+
3
4
;
當(dāng)-
1
2
<a≤
1
2
,函數(shù)f(x)的最小值為a2+1
當(dāng)a>
1
2
時(shí),函數(shù)f (x)的最小值為
3
4
+a.
點(diǎn)評(píng):本題主要考查了二次函數(shù)的對(duì)稱性和奇偶性,以及單調(diào)性,同時(shí)考查了分類討論的數(shù)學(xué)思想和運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案