已知
、
為橢圓
的左右焦點(diǎn),點(diǎn)
為其上一點(diǎn),且有![]()
.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)過
的直線
與橢圓
交于
、
兩點(diǎn),過
與
平行的直線
與橢圓
交于
、
兩點(diǎn),求四邊形
的面積
的最大值.
(1)
;(2)
.
解析試題分析:(1)設(shè)橢圓
的標(biāo)準(zhǔn)方程為
,先利用橢圓定義得到
的值并求出
的值,然后將點(diǎn)
的坐標(biāo)代入橢圓方程求出
的值,最終求出橢圓
的方程;(2)根據(jù)平行四邊形的幾何性質(zhì)得到
,即先求出
的面積的最大值,先設(shè)直線
的方程為
,且
、
,將此直線的方程與橢圓
的方程聯(lián)立,結(jié)合韋達(dá)定理將
的面積表示成只含
的表達(dá)式,并利用換元法將代數(shù)式進(jìn)行化簡(jiǎn),最后利用基本不等式并結(jié)合雙勾函數(shù)的單調(diào)性來求出
面積的最大值,從而確定平行四邊形
面積的最大值.
(1)設(shè)橢圓
的標(biāo)準(zhǔn)方程為
,
由已知
得
,![]()
,
又點(diǎn)
在橢圓上,![]()
![]()
,
橢圓
的標(biāo)準(zhǔn)方程為
;
(2)由題意可知,四邊形
為平行四邊形 ![]()
,
設(shè)直線
的方程為
,且
、
,
由
得
,
,
,
,
,
令
,則
,
,
又
在
上單調(diào)遞增,![]()
,![]()
的最大值為
,
所以
的最大值為
.
考點(diǎn):1.橢圓的定義與方程;2.直線與橢圓的位置關(guān)系;3.韋達(dá)定理;4.基本不等式
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
的圓心在坐標(biāo)原點(diǎn)
,且恰好與直線
相切,設(shè)點(diǎn)A為圓上一動(dòng)點(diǎn),
軸于點(diǎn)
,且動(dòng)點(diǎn)
滿足
,設(shè)動(dòng)點(diǎn)
的軌跡為曲線![]()
(1)求曲線C的方程,
(2)直線l與直線l,垂直且與曲線C交于B、D兩點(diǎn),求△OBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓C的方程;
(2)設(shè)直線
與橢圓C交于A、B兩點(diǎn),以
弦為直徑的圓過坐標(biāo)原點(diǎn)
,試探討點(diǎn)
到直線
的距離是否為定值?若是,求出這個(gè)定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓
,直線
的方程為
,過右焦點(diǎn)
的直線
與橢圓交于異于左頂點(diǎn)
的
兩點(diǎn),直線
,
交直線
分別于點(diǎn)
,
.
(1)當(dāng)
時(shí),求此時(shí)直線
的方程;
(2)試問
,
兩點(diǎn)的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,請(qǐng)說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓C1:
=1(a>b>0)的左、右焦點(diǎn)分別為為
,
恰是拋物線C2:
的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
.
(1)求C1的方程;
(2)平面上的點(diǎn)N滿足
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,其短軸兩端點(diǎn)為
.
(1)求橢圓
的方程;
(2)若
是橢圓
上關(guān)于
軸對(duì)稱的兩個(gè)不同點(diǎn),直線
與
軸分別交于點(diǎn)
.判斷以
為直徑的圓是否過點(diǎn)
,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)拋物線
:
的焦點(diǎn)為
,準(zhǔn)線為
,過準(zhǔn)線
上一點(diǎn)
且斜率為
的直線
交拋物線
于
,
兩點(diǎn),線段
的中點(diǎn)為
,直線
交拋物線
于
,
兩點(diǎn).
(1)求拋物線
的方程及
的取值范圍;
(2)是否存在
值,使點(diǎn)
是線段
的中點(diǎn)?若存在,求出
值,若不存在,請(qǐng)說明理由. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的兩個(gè)焦點(diǎn)分別為
和
,離心率
.
(1)求橢圓
的方程;
(2)設(shè)直線
(
)與橢圓
交于
、
兩點(diǎn),線段
的垂直平分線交
軸于點(diǎn)
,當(dāng)
變化時(shí),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知平面內(nèi)一動(dòng)點(diǎn)
到兩個(gè)定點(diǎn)
、
的距離之和為
,線段
的長(zhǎng)為
.![]()
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)過點(diǎn)
作直線
與軌跡
交于
、
兩點(diǎn),且點(diǎn)
在線段
的上方,
線段
的垂直平分線為
.
①求
的面積的最大值;
②軌跡
上是否存在除
、
外的兩點(diǎn)
、
關(guān)于直線
對(duì)稱,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com