【題目】已知拋物線C的一個(gè)焦點(diǎn)為
,對應(yīng)于這個(gè)焦點(diǎn)的準(zhǔn)線方程為![]()
(1)寫出拋物線
的方程;
(2)過
點(diǎn)的直線與曲線
交于
兩點(diǎn),
點(diǎn)為坐標(biāo)原點(diǎn),求
重心
的軌跡方程;
(3)點(diǎn)
是拋物線
上的動點(diǎn),過點(diǎn)
作圓
的切線,切點(diǎn)分別是
.當(dāng)
點(diǎn)在何處時(shí),
的值最?求出
的最小值.
【答案】(1)
(2)
(3) ![]()
【解析】
(1)根據(jù)拋物線定義以及標(biāo)準(zhǔn)方程可得結(jié)果,(2)根據(jù)重心坐標(biāo)公式得
與A,B坐標(biāo)關(guān)系,再聯(lián)立直線方程與拋物線方程,利用韋達(dá)定理得重心坐標(biāo)參數(shù)方程,消去參數(shù)得軌跡方程,(2)根據(jù)射影定理得
,再利用兩點(diǎn)間距離公式求
,結(jié)合二次函數(shù)性質(zhì)求最值,即得結(jié)果.
解:(1)拋物線方程為:
.
(2)①當(dāng)直線不垂直于x軸時(shí),設(shè)方程為
,代入
,得:![]()
設(shè)
,則
,
設(shè)△AOB的重心為
則
,消去k得
為所求,
②當(dāng)直線垂直于x軸時(shí),
△AOB的重心
也滿足上述方程.
綜合①②得,所求的軌跡方程為
(3)設(shè)已知圓的圓心為Q(3,0),半徑
,
根據(jù)圓的性質(zhì)有:![]()
當(dāng)
最小時(shí),|MN|取最小值,
設(shè)P點(diǎn)坐標(biāo)為
,則![]()
∴當(dāng)
,
時(shí),
取最小值5,
故當(dāng)P點(diǎn)坐標(biāo)為(2,±2)時(shí),|MN|取最小值
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是( )
A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)
【答案】D
【解析】
根據(jù)函數(shù)的單調(diào)性可得an+1﹣an>0對于n∈N*恒成立,建立關(guān)系式,解之即可求出k的取值范圍.
∵數(shù)列{an}中
,且{an}單調(diào)遞增
∴an+1﹣an>0對于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0對于n∈N*恒成立
∴k<2n+1對于n∈N*恒成立,即k<3
故選:D.
【點(diǎn)睛】
本題主要考查了數(shù)列的性質(zhì),本題易錯(cuò)誤地求導(dǎo)或把它當(dāng)成二次函數(shù)來求解,注意n的取值是解題的關(guān)鍵,屬于易錯(cuò)題.
【題型】單選題
【結(jié)束】
8
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時(shí)間的頻率分布直方圖,其中收看時(shí)間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=![]()
, g(x)=asin(
x+
π)﹣2a+2(a>0),給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,
];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對任意a>0,方程f(x)=g(x)在區(qū)間[0,1]內(nèi)恒有解;
④若x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是:
≤a≤
.
其中所有正確結(jié)論的序號為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某自行車手從O點(diǎn)出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點(diǎn)A位于點(diǎn)O南偏東45°且與點(diǎn)O相距20
千米.該車手于上午8點(diǎn)整到達(dá)點(diǎn)A,8點(diǎn)20分騎至點(diǎn)C,其中點(diǎn)C位于點(diǎn)O南偏東(45°﹣α)(其中sinα=
,0°<α<90°)且與點(diǎn)O相距5
千米(假設(shè)所有路面及觀測點(diǎn)都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點(diǎn)O正西方向27.5千米處有個(gè)氣象觀測站E,假定以點(diǎn)E為中心的3.5千米范圍內(nèi)有長時(shí)間的持續(xù)強(qiáng)降雨.試問:該自行車手會不會進(jìn)入降雨區(qū),并說明理由.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱
中,四邊形
四邊均相等,點(diǎn)
在面
的射影為
中點(diǎn)
.
![]()
(1)證明:
;
(2)若
,
,
,求
點(diǎn)到面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1)焦點(diǎn)在y軸上,焦距是4,且經(jīng)過點(diǎn)M(3,2);
(2)c∶a=5∶13,且橢圓上一點(diǎn)到兩焦點(diǎn)的距離的和為26.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四種說法
①在△ABC中,若∠A>∠B,則sinA>sinB;
②等差數(shù)列{an}中,a1 , a3 , a4成等比數(shù)列,則公比為
;
③已知a>0,b>0,a+b=1,則
+
的最小值為5+2
;
④在△ABC中,已知
=
=
, 則∠A=60°.
正確的序號有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺A、B設(shè)備上加工一件甲所需工時(shí)分別為1
,2
,加工一件乙設(shè)備所需工時(shí)分別為2
,1
.A、B兩種設(shè)備每月有效使用臺時(shí)數(shù)分別為400
和500
,分別用
表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用
列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com