函數(shù)y=x|x|,x∈R,滿足( )
A.是奇函數(shù)又是減函數(shù)
B.是偶函數(shù)又是增函數(shù)
C.是奇函數(shù)又是增函數(shù)
D.是偶函數(shù)又是減函數(shù)
【答案】分析:先有f(x)與f(-x)的關(guān)系的出y=f(x)是奇函數(shù),再利用奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同,得到單調(diào)性綜合可得結(jié)論.
解答:解;因?yàn)楹瘮?shù)y=f(x)=x|x|,
∴f(-x)=-x|-x|=-x|x|=-f(x)故y=f(x)是奇函數(shù);
當(dāng)x≥0時(shí),y=f(x)=x2,開口向上對(duì)稱軸為x=0,
所以y=f(x)在x≥0時(shí)是增函數(shù),
又因?yàn)槠婧瘮?shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相同,所以y=f(x)是增函數(shù);
即y=f(x)是奇函數(shù)又是增函數(shù).
故選C.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性和函數(shù)的單調(diào)性的判定,是基礎(chǔ)題.