(05年福建卷)(12分)
如圖,直二面角D―AB―E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B―AC―E的大;
(Ⅲ)求點D到平面ACE的距離.
![]()
解法一:(Ⅰ) ∵BF⊥平面ACE,∴BF⊥AE,∵二面角D-AB-E為直二面角,且CB⊥AB,
∴CB⊥平面ABE,∴CB⊥AE,∴AE⊥平面BCE
![]()
(Ⅱ)連結(jié)BD交AC于G,連結(jié)FG,∵正方形ABCD邊長為2,∴BG⊥AC,BG=
,
∵BF⊥平面ACE,由三垂線定理的逆定理得FG⊥AC,∴∠BCF是二面角B-AC-E的平面角,
由(Ⅰ)AE⊥平面BCE,∴AE⊥EB.又∵AE=EB,∴在等腰直角三角形中,BE=
.
又∵直角三角形BCE中,EC=
,BF=![]()
∴直角三角形BFG中,sin∠BGF=
,∴二面角B-AC-E等于arcsin
.
,(Ⅲ)過E作EO⊥AB交AB于O,OE=1,∵二面角D-AB-E為直二面角,∴EO⊥平面ABCD.
設(shè)D到平面ACE的距離為h,∵
,∴
.
∵AE⊥平面BCE,∴AE⊥EC.∴h=
.
∴點D點D到平面ACE的距離為
.
解法二:(Ⅰ)同解法一.
(Ⅱ)以線段AB的中點為原點O,OE所在直線為x軸,AB所在直線為y軸,過O點平行于AD的直線為z軸,建立空間直角坐標系O-xyz,如圖
∵AE⊥平面BCE,BE
面BCE,∴AE⊥BE,在直角三角形AEB中,AB=2,O為AB的中點
∴OE=1,A(0,-1,0),E(1,0,0),C(0,1,2),![]()
![]()
設(shè)平面AEC的一個法向量
=(x,y,z),則
即
解得![]()
令x=1,得
=(1,-1,1)是平面EAC的一個法向量,又平面BAC的一個法向量為
=(1,0,0),
∴cos(
)=![]()
∴二面角B-AC-E的大小為arccos
.
(Ⅲ)∵AD∥z軸,AD=2,∴
,∴點D到平面ACE的距離
d=|
|
.
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學(xué)員可以說是“萬里挑一”,要想通過需過“五關(guān)”――目測、初檢、復(fù)檢、文考、政審等. 某校甲、乙、丙三個同學(xué)都順利通過了前兩關(guān),有望成為光榮的空軍飛行學(xué)員. 根據(jù)分析,甲、乙、丙三個同學(xué)能通過復(fù)檢關(guān)的概率分別是0.5,0.6,0.75,能通過文考關(guān)的概率分別是0.6,0.5,0.4,通過政審關(guān)的概率均為1.后三關(guān)相互獨立.
(1)求甲、乙、丙三個同學(xué)中恰有一人通過復(fù)檢的概率;
(2)設(shè)通過最后三關(guān)后,能被錄取的人數(shù)為
,求隨機變量
的期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(09年江蘇百校樣本分析)(10分)(矩陣與變換) 給定矩陣 A=
,
=
.
(1)求A的特征值
、
及對應(yīng)的特征向量
;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年莆田四中一模理) (14分)
由函數(shù)
確定數(shù)列
,
,若函數(shù)
的反函數(shù)
能確定數(shù)列
,
,則稱數(shù)列
是數(shù)列
的“反數(shù)列”。
(1)若函數(shù)
確定數(shù)列
的反數(shù)列為
,求
的通項公式;
(2)對(1)中
,不等式
對任意的正整數(shù)
恒成立,求實數(shù)
的范圍;
(3)設(shè)
,若數(shù)列
的反數(shù)列為
,
與
的公共項組成的數(shù)列為
;求數(shù)列
前
項和![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(05年遼寧卷)(12分)
已知函數(shù)
.設(shè)數(shù)列
滿足
,
,數(shù)列
滿足
,
…
,
(Ⅰ)用數(shù)學(xué)歸納法證明
;(Ⅱ)證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(05年湖北卷文)(12分)
設(shè)數(shù)列
的前n項和為Sn=2n2,
為等比數(shù)列,且![]()
(Ⅰ)求數(shù)列
和
的通項公式;
(Ⅱ)設(shè)
,求數(shù)列
的前n項和Tn.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com