【題目】如圖所示,在正方體
中,點
是棱
上的一個動點,平面
交棱
于點
.給出下列命題:
![]()
①存在點
,使得
//平面
;
②對于任意的點
,平面
平面
;
③存在點
,使得
平面
;
④對于任意的點
,四棱錐
的體積均不變.
其中正確命題的序號是______.(寫出所有正確命題的序號).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
的頂點在坐標(biāo)原點,焦點在
軸上,且過點
.
(I)求
的標(biāo)準(zhǔn)方程;
(Ⅱ)若
為坐標(biāo)原點,
是
的焦點,過點
且傾斜角為
的直線
交
于
,
兩點,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知⊙O的方程x2+y2=4,直線l:x=4,在以O(shè)為極點,x軸的正半軸為極軸的極坐標(biāo)系中,過極點作射線交⊙O于A,交直線l于B.
(1)寫出⊙O及直線l的極坐標(biāo)方程;
(2)設(shè)AB中點為M,求動點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,已知點A(-2,0),直角頂點B(0,-2
),點C在x軸上。
![]()
(1)求Rt△ABC外接圓的方程;
(2)求過點(-4,0)且與Rt△ABC外接圓相切的直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:(x+1)2+y2=25,圓C2:(x﹣1)2+y2=1,動圓C與圓C1和圓C2均內(nèi)切. ![]()
(1)求動圓圓心C的軌跡E的方程;
(2)點P(1,t)為軌跡E上點,且點P為第一象限點,過點P作兩條直線與軌跡E交于A,B兩點,直線PA,PB斜率互為相反數(shù),則直線AB斜率是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,設(shè)直線l過點
,且直線l與曲線C:ρ=asinθ(a>0)有且只有一個公共點,求實數(shù)a的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com