分析 由等差數(shù)列{an}的首項為1,公差為3,求出Sn=$\frac{3}{2}{n}^{2}-\frac{1}{2}n$,再由Sn=35,得${S}_{n}=\frac{3}{2}{n}^{2}-\frac{1}{2}n=35$,由此能求出結(jié)果.
解答 解:∵等差數(shù)列{an}的首項為1,公差為3,
∴${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$=n+$\frac{n(n-1)}{2}×3$=$\frac{3}{2}{n}^{2}-\frac{1}{2}n$,
∵Sn=35,∴${S}_{n}=\frac{3}{2}{n}^{2}-\frac{1}{2}n=35$,
解得n=5或n=-$\frac{14}{3}$(舍).
故答案為:5.
點評 本題考查等差數(shù)列的前n項和為35的項數(shù)n的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,π) | B. | $[{\frac{π}{2},\frac{3π}{2}}]$ | C. | $[{-\frac{π}{2},\frac{π}{2}}]$ | D. | (π,2π) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,2) | B. | (0,-2) | C. | (-2,0) | D. | (2,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{7}{9}$ | B. | $\frac{8}{9}$ | C. | $\frac{{4\sqrt{2}}}{9}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | i<11 | B. | i>11 | C. | i<22 | D. | i>22 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 甲 | 27 | 38 | 30 | 37 | 35 | 31 |
| 乙 | 33 | 29 | 38 | 34 | 28 | 36 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com