【題目】已知拋物線
的焦點(diǎn)為
,
為過定點(diǎn)
的兩條直線.
(1)若
與拋物線
均無交點(diǎn),且
,求直線
的斜率
的取值范圍;
(2)若
與拋物線
交于兩個(gè)不同的點(diǎn)
,以
為直徑的圓
過點(diǎn)
,求圓
的方程.
![]()
【答案】(1)
或
;(2)![]()
【解析】試題分析:(1) 設(shè)直線
的方程為
,代入拋物線得![]()
即
,由于
與拋物線
無交點(diǎn)所以![]()
同理
與拋物線
均無交點(diǎn),然后取交集即可;(2) 由①得
,
,由于
,所以
,計(jì)算得
,此時(shí)圓心
,滿足
,從而得到圓
的方程.
試題解析:
(1)當(dāng)
的斜率不存在時(shí),
的斜率為0,顯然不符合題意.
所以設(shè)直線
的方程為
,代入拋物線得![]()
即
………①
由于
與拋物線
無交點(diǎn)所以![]()
即有
,∴
………②
同理,
方程為
,
由
與拋物線
無交點(diǎn)可得
,
即
………③
由②③得
,得
或![]()
(2)設(shè)
,由①得
,
,
所以
易得
, ![]()
由于
,所以
,而![]()
即
,即![]()
即
,得
,
此時(shí)圓心
,則
,
半徑![]()
所求的圓方程為![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1:
+
=1(a>b>0)的離心率為
,P(﹣2,1)是C1上一點(diǎn).
(1)求橢圓C1的方程;
(2)設(shè)A,B,Q是P分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點(diǎn)的對稱點(diǎn),平行于AB的直線l交C1于異于P、Q的兩點(diǎn)C,D,點(diǎn)C關(guān)于原點(diǎn)的對稱點(diǎn)為E.證明:直線PD、PE與y軸圍成的三角形是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對任意正整數(shù)n,都有an=
+2成立.
(1)記bn=log2an , 求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=
,求數(shù)列{cn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為
.
![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為
、
,當(dāng)動(dòng)點(diǎn)
在定直線
上運(yùn)動(dòng)時(shí),直線
分別交橢圓于兩點(diǎn)
、
,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)
滿足
,當(dāng)
時(shí)總有
,若
,則實(shí)數(shù)
的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線l1:y=k1x+1,l2:y=k2x-1,其中實(shí)數(shù)k1,k2滿足k1k2+2=0. 證明:
(1)l1與l2相交;
(2)l1與l2的交點(diǎn)在曲線2x2+y2=1上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,
分別是橢圓
的左、右焦點(diǎn),焦距為
,動(dòng)弦
平行于
軸,且
.
(1)求橢圓
的方程;
(2)過
分別作直線
交橢圓于
和
,且
,求四邊形
面積的最大值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
,焦距為2,離心率
為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)
作圓
的切線,切點(diǎn)分別為
,直線
與
軸交于點(diǎn)
,過點(diǎn)
的直線
交橢圓
于
兩點(diǎn),點(diǎn)
關(guān)于
軸的對稱點(diǎn)為
,求
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形
為矩形,四邊形
為直角梯形,
,
,
,
,
,
.
![]()
(1)求證:
;
(2)求證:
平面
;
(3)若二面角
的大小為
,求直線
與平面
所成的角.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com