【題目】如圖,Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=1,則這個平面圖形的面積是( ) ![]()
A.![]()
B.1
C.![]()
D.
【答案】C
【解析】解答:由已知中Rt△O′A′B′,直角邊O′B′=1 則Rt△O′A′B′的面積S= ![]()
由原圖的面積與直觀圖面積之比為1: ![]()
可得原圖形的面積為: ![]()
故選C
分析:由已知中Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=1,我們易求出Rt△O′A′B′的面積,再根據(jù)原圖的面積與直觀圖面積之比為1:
,即可求出滿足條件答案.
【考點(diǎn)精析】利用平面圖形的直觀圖對題目進(jìn)行判斷即可得到答案,需要熟知要畫好對應(yīng)平面圖形的直觀圖,首先應(yīng)在原圖形中確定直角坐標(biāo)系,然后在此基礎(chǔ)上畫出水平放置的平面坐標(biāo)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ= ![]()
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項am , an使得
=4a1 , 則
+
的最小值為( )
A.![]()
B.![]()
C.![]()
D.不存在
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的首項a1為常數(shù),且an+1=3n﹣2an , (n∈N*)
(1)證明:{an﹣
}是等比數(shù)列;
(2)若a1=
,{an}中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某食品廠為了檢查甲、乙兩條自動包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在
內(nèi)的產(chǎn)品為合格品,否則為不合格品,統(tǒng)計結(jié)果如表:
![]()
(Ⅰ)求甲流水線樣本合格的頻率;
(Ⅱ)從乙流水線上重量值落在
內(nèi)的產(chǎn)品中任取2個產(chǎn)品,求這2件產(chǎn)品中恰好只有一件合格的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
與拋物線
:
相交于
,
兩點(diǎn),
是線段
的中點(diǎn),過
作
軸的垂線交
于點(diǎn)
.
(Ⅰ)證明:拋物線
在點(diǎn)
處的切線與
平行;
(Ⅱ)是否存在實數(shù)
使
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某射擊運(yùn)動員每次射擊擊中目標(biāo)的概率都為,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員4次射擊至少3次擊中目標(biāo)的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1表示沒有擊中目標(biāo),2,3,4,5,6,7,8,9表示擊中目標(biāo),再以每4個隨機(jī)數(shù)為一組,代表4次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
據(jù)此估計,該射擊運(yùn)動員4次射擊至少3次擊中目標(biāo)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=﹣
sinx
cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若x∈[0,
],且f(x)=
,求cosx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:方程x2+y2﹣ax+y+1=0表示圓;命題q:方程2ax+(1﹣a)y+1=0表示斜率大于1的直線,若p∨q為真命題,p∧q為假命題,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com