【題目】在直角坐標系
中,直線
的參數(shù)方程為
(t為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).設(shè)
與
的交點為
,當(dāng)
變化時,
的軌跡為曲線![]()
(1)寫出
的普通方程;
(2)以坐標原點為極點,
軸正半軸為極軸建立極坐標系,設(shè)
,
為
與
的交點,求
的極徑.
【答案】(1)
;(2)
.
【解析】
(1)分別消掉參數(shù)t與m可得直線l1與直線l2的普通方程為y=k(x-2)①與x=-2+ky②;聯(lián)立①②,消去k可得C的普通方程為x2-y2=4;
(2)將l的極坐標方程與曲線C的極坐標方程聯(lián)立,可得關(guān)于θ的方程,解得tanθ,即可求得l與C的交點M的極徑為ρ.
(1)消去參數(shù)t,得l1的普通方程l1:y=k(x-2);
消去參數(shù)m,得l2的普通方程l2:y=
(x+2). 設(shè)P(x,y),由題設(shè)得![]()
消去k,得x2-y2=4(y≠0),所以C的普通方程為x2-y2=4(y≠0).
(2)C的極坐標方程為ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),
聯(lián)立
得cos θ-sin θ=2(cos θ+sin θ).
故tan θ=-
,從而cos2θ=
,sin2θ=
.
代入ρ2(cos2θ-sin2θ)=4,得ρ2=5,所以l與C的交點M的極徑為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,石家莊經(jīng)濟快速發(fā)展,躋身新三線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),石家莊的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查石家莊市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分數(shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中
.
![]()
(1)求
,
的值;
(2)求被調(diào)查的市民的滿意程度的平均數(shù),中位數(shù)(保留小數(shù)點后兩位),眾數(shù);
(3)若按照分層抽樣從
,
中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數(shù)在
的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗》國家標準,新標準規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過反復(fù)試驗,喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點圖”如下:
![]()
該函數(shù)模型如下:
![]()
根據(jù)上述條件,回答以下問題:
(1)試計算喝1瓶啤酒后多少小時血液中的酒精含量達到最大值?最大值是多少?
(2)試計算喝1瓶啤酒后多少小時后才可以駕車?(時間以整小時計算)
(參數(shù)數(shù)據(jù):
,
,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列
滿足
,
.
(1)求
的通項公式;
(2)設(shè)等比數(shù)列
滿足
,
,問:
與數(shù)列
的第幾項相等?
(3)若數(shù)列
,求數(shù)列
的前
項和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若函數(shù)
在
處的切線平行于直線
,求實數(shù)a的值;
(Ⅱ)判斷函數(shù)
在區(qū)間
上零點的個數(shù);
(Ⅲ)在(Ⅰ)的條件下,若在
上存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集
.
(1)解關(guān)于
的不等式
;
(2)記
為(1)中不等式的解集,
為不等式組
的整數(shù)解集,若
恰有三個元素,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某鮮奶店每天購進30瓶鮮牛奶,且當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式
(n∈N).鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶)繪制出如下的柱形圖(例如:日需求量為25瓶時,頻數(shù)為5):
![]()
(1)求這100天的日利潤(單位:元)的平均數(shù);
(2)以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)
,如表所示:
試銷單價x(元) | 4 | 5 | 6 | 7 | 8 |
產(chǎn)品銷量y(件) | q | 85 | 82 | 80 | 75 |
已知![]()
(1)求出q的值;
(2)已知變量
具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程
;
(3)假設(shè)試銷單價為10元,試估計該產(chǎn)品的銷量.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com