欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.下列描述不能看作算法的是(  )
A.做米飯需要刷鍋,淘米,添水,加熱這些步驟
B.洗衣機(jī)的使用說(shuō)明書(shū)
C.利用公式S=πr2計(jì)算半徑為4的圓的面積,就是計(jì)算π×42
D.解方程2x2+x-1=0

分析 由算法的概念知算法不是一個(gè)問(wèn)題的解題過(guò)程,算法可以理解為有基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟.或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟和序列可以解決一類問(wèn)題,算法是有限步,結(jié)果是明確的;由此判斷選項(xiàng)是否正確.

解答 解:對(duì)于A,做米飯需要刷鍋,淘米,添水,加熱這些步驟,是按規(guī)定的操作順序完成一定的任務(wù),是算法;
對(duì)于B,洗衣機(jī)的使用說(shuō)明書(shū)是按規(guī)定的操作順序完成一定的任務(wù),是算法;
對(duì)于C,利用公式S=πr2計(jì)算半徑為4的圓的面積,是按公式計(jì)算圓的面積,是算法;
對(duì)于D,解方程2x2+x-1=0,沒(méi)有確定的解題步驟,不是算法.
故選:D.

點(diǎn)評(píng) 本題考查了算法的概念與應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x>a}\\{{x}^{2}+5x+2,x≤a}\end{array}\right.$,函數(shù)g(x)=f(x)-2x恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[-1,1)B.[0,2]C.[-2,2)D.[-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.(文科)sin42°cos18°-cos138°cos72°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.兩條直線l1:2x+y+c=0,l2:x-2y+1=0的位置關(guān)系是( 。
A.平行B.垂直C.重合D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知點(diǎn)P為函數(shù)f(x)=lnx的圖象上任意一點(diǎn),點(diǎn)Q為圓${[{x-(e+\frac{1}{e})}]^2}+{y^2}=\frac{1}{4}$上任意一點(diǎn),則線段PQ長(zhǎng)度的最小值為( 。
A.$\frac{{e-\sqrt{{e^2}-1}}}{e}$B.$\frac{{2\sqrt{{e^2}+1}-e}}{2e}$C.$\frac{{\sqrt{{e^2}+1}-e}}{2e}$D.$e+\frac{1}{e}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.第十二屆全運(yùn)會(huì)將在沈陽(yáng)市舉行.若將6名志愿者每2人一組,分派到3個(gè)不同的場(chǎng)館,且甲、乙兩人必須同組,則不同的分配方案有18種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.下列說(shuō)法:
①正切函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)$f(x)=cos(\frac{2}{3}x+\frac{π}{2})$是奇函數(shù);
③$x=\frac{π}{8}$是函數(shù)$y=sin(2x+\frac{5}{4}π)$的一條對(duì)稱軸方程;
其中正確的是??②③.(寫(xiě)出所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知數(shù)列{an}的首項(xiàng)為-1,an+1=2an+2,則數(shù)列{an}的通項(xiàng)公式為an=( 。
A.2n-1-2B.2n-2C.2n-1-2nD.-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=2ax-$\frac{x}$+4lnx在x=1與$x=\frac{1}{3}$處都取得極值.
(1)求a、b的值;
(2)若對(duì)x∈[$\frac{1}{e}$,e]時(shí),f(x)≥c恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案