【題目】如圖,在多面體
中,底面
是邊長(zhǎng)為2的菱形,
,四邊形
是矩形,平面
平面
.
(1)在圖中畫出過(guò)點(diǎn)
的平面
,使得
平面
(必須說(shuō)明畫法,不需證明);
(2)若二面角
是
,求
與平面
所成角的正弦值.
![]()
【答案】(1)見解析;(2)
.
【解析】試題分析: (1)利用面面平行的判定定理作出平面
;(2)以
為原點(diǎn),
所在的直線分別為
軸,
軸,
軸,建立空間直角坐標(biāo)系,方法一是設(shè)
,寫出各點(diǎn)坐標(biāo),將
與平面
的角轉(zhuǎn)化為
與平面
的角,由面
與面
所成的角為
,求出
,再求出
與平面
所成的角.方法二是設(shè)
,寫出各點(diǎn)坐標(biāo),設(shè)平面
的法向量
,由
,求出
的一個(gè)坐標(biāo),再根據(jù)已知二面角,求出
,再求出
與平面
所成的角.
試題解析:(1)如圖所示,分別取
的中點(diǎn)
,連接
,四邊形
所確定的平面為平面
.
![]()
(2)取
的中點(diǎn)
,連接
交
于點(diǎn)
,連接
,
∵四邊形
為矩形,
分別為
的中點(diǎn),
∴
.
因?yàn)槠矫?/span>
平面
,∴
平面
,∴
平面
.因?yàn)?/span>
為菱形,即
.
以
為原點(diǎn),
所在直線分別為
軸,
軸,
軸,如圖建立空間直角坐標(biāo)系.
方法一:因?yàn)槠矫?/span>
平面
,所以
與平面
所成的角可以轉(zhuǎn)化為
與平面
所成的角,則平面
與平面
所成角為
.
設(shè)
,則
,
,
,
,
,
,設(shè)平面
的法向量為
,
,令
,得
.易看出
是平面
的一個(gè)法向量,依題得
,解得
.
∴
,又
,∴
.
方法二:設(shè)
,則
,
,
,所以
,
.
設(shè)平面
的法向量為
,則
,令
,得
,由
平面
,得平面
的法向量為
,則
,所以
.又
,
,∴
.
∴
與平面
所成角的正弦值為
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿足
,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)
的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
的部分圖象如圖所示.
![]()
(1) 求函數(shù)
的解析式;
(2) 如何由函數(shù)
的通過(guò)適當(dāng)圖象的變換得到函數(shù)
的圖象, 寫出變換過(guò)程;
(3) 若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=f(x)最大值為3,且f(﹣4)=f(0)=﹣1
(1)求f(x)的解析式;
(2)求f(x)在[﹣3,3]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)橢圓
:
的左右焦點(diǎn)
分別作直線
,
交橢圓于
與
,且
.
![]()
(1)求證:當(dāng)直線
的斜率
與直線
的斜率
都存在時(shí),
為定值;
(2)求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)的二次項(xiàng)系數(shù)為a,且f(x)>﹣x的解集為{x|1<x<2},方程f(x)+2a=0有兩相等實(shí)根,求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x/攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y/顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)。
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰2天的數(shù)據(jù)的概率;
(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請(qǐng)根據(jù)12月2日至4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
,并判斷該線性回歸方程是否可靠(若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的
附:回歸方程
中斜率和截距的最小二乘估計(jì)公式分別為:
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校歌詠比賽中,甲班、乙班、丙班、丁班均可從
、
、
、
四首不同曲目中任選一首.
(1)求甲、乙兩班選擇不同曲目的概率;
(2)設(shè)這四個(gè)班級(jí)總共選取了
首曲目,求
的分布列及數(shù)學(xué)期望
.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com