欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知△ABC是等腰直角三角形,點E,F(xiàn)是斜邊AC的三等分點,則tan∠EBF=(  )
A.$\frac{16}{27}$B.$\frac{2}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{3}{4}$

分析 由題意,設(shè)AC=6,點E,F(xiàn)是斜邊AC的三等分點,可得EF=2.過B點作AC的垂下交于D,利用三角函數(shù)的定義可得tan∠DBF的值,利用二倍角可得答案.

解答 解:由題意,設(shè)AC=6,點E,F(xiàn)是斜邊AC的三等分點,可得EF=2.過B點作AC的垂下交于D,∠DBF=∠DBE.
∵△ABC是等腰直角三角形,
AB=BC=$2\sqrt{3}$.DC=3
由勾股定理,可得:DB=3.
那么:tan∠DBF=$\frac{1}{3}$.
∴tan∠EBF=tan2∠DBF=$\frac{2tan∠DBF}{1-ta{n}^{2}∠DBF}$=$\frac{3}{4}$.
故選:D.

點評 本題考查了三角函數(shù)的定義的運用和等腰直角三角形的性質(zhì).屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.省實驗中學(xué)高三共有學(xué)生600人,一次數(shù)學(xué)考試的成績(試卷滿分150分)服從正態(tài)分布N(100,σ2),統(tǒng)計結(jié)果顯示學(xué)生考試成績在80分到100分之間的人數(shù)約占總?cè)藬?shù)的$\frac{1}{3}$,則此次考試成績不低于120分的學(xué)生約有100人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正方形ABCD,沿對角線BD折成直二面角A-BD-C,則折后的異面直線AB與CD所成的角的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.邊長為2的正三角形ABC內(nèi)(包括三邊)有點P,$\overrightarrow{PB}$$•\overrightarrow{PC}$=1,則$\overrightarrow{AP}$•$\overrightarrow{AB}$的范圍是( 。
A.[2,4]B.[$\frac{3-\sqrt{5}}{2}$,4]C.[3-$\sqrt{5}$,2]D.[$\frac{3-\sqrt{5}}{2}$,3-$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.圓C1:x2+y2-4x-2y+1=0與圓C2:x2+y2+4x-8y+11=0的位置關(guān)系為( 。
A.相交B.相離C.外切D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線y=axcosx在$({\frac{π}{2},0})$處的切線的斜率為$\frac{1}{2}$,則實數(shù)a的值為(  )
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{1}{π}$D.$-\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)f(x)=2kx3+4(k-1)x2-3k2-2在區(qū)間(0,2)上是減函數(shù),則k的取值范圍是( 。
A.$k<\frac{2}{5}$B.$k≤\frac{2}{5}$C.$0<k≤\frac{2}{5}$D.$0≤k≤\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.正弦函數(shù)是奇函數(shù),因為f(x)=sin(x+1)是正弦函數(shù),所以f(x)=sin(x+1)是奇函數(shù).以上推理(  )
A.結(jié)論正確B.大前提錯誤C.小前提錯誤D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{4}$=1兩焦點分別為F1、F2,P是橢圓在第一象限弧上一點,并滿足$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=1,過P作兩條直線PA、PB分別交橢圓于A、B兩點.
(1)求P點坐標;
(2)若直線AB的斜率為$\sqrt{2}$,求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案