欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=lnx+x2
(Ⅰ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)F(x)=2f(x)-3x2-kx(k∈R),若函數(shù)F(x)存在兩個(gè)零點(diǎn)m,n(0<m<n),且滿(mǎn)足2x0=m+n,問(wèn):函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線(xiàn)能否平行于x軸?若能,求出該切線(xiàn)方程;若不能,請(qǐng)說(shuō)明理由.
分析:(Ⅰ)根據(jù)題意寫(xiě)出g(x)再求導(dǎo)數(shù),由題意知g′(x)≥0,x∈(0,+∞)恒成立,轉(zhuǎn)化為a≤2x+
1
x
,再利用基本不等式求右邊的最小值,即可求得實(shí)數(shù)a的取值范圍;
(Ⅱ)先假設(shè)F(x)在(x0,F(xiàn)(x0))的切線(xiàn)平行于x軸,其中F(x)=2lnx-x2-kx.結(jié)合題意列出方程組,利用換元法導(dǎo)數(shù)研究單調(diào)性,證出ln
m
n
2(
m
n
-1)
m
n
+1
在(0,1)上成立,從而出現(xiàn)與題設(shè)矛盾,說(shuō)明原假設(shè)不成立.由此即可得到函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線(xiàn)不能平行于x軸.
解答:解:(Ⅰ)∵g(x)=f(x)-ax=lnx+x2-ax,∴g′(x)=
1
x
+2x-a
由題意知,g′(x)≥0,x∈(0,+∞)恒成立,即a≤(2x+
1
x
min
又x>0,2x+
1
x
2
2
,當(dāng)且僅當(dāng)x=
2
2
時(shí)等號(hào)成立
故(2x+
1
x
min=2
2
,所以a≤2
2

(Ⅱ)設(shè)F(x)在(x0,F(xiàn)(x0))的切線(xiàn)平行于x軸,其中F(x)=2lnx-x2-kx
結(jié)合題意,有
2lnm-m2-km=0…①
2lnn-n2-kn=0…②
m+n=2x0…③
2
x0
-2x0-k=0…④

①-②得2ln
m
n
-(m+n)(m-n)=k(m-n)
所以k=
2ln
m
n
m-n
-2x0
,由④得k=
2
x0
-2x0
所以ln
m
n
=
2(m-n)
m+n
=
2(
m
n
-1)
m
n
+1
…⑤
設(shè)u=
m
n
∈(0,1),得⑤式變?yōu)閘nu-
2u-2
u+1
=0(u∈(0,1))
設(shè)y=lnu-
2u-2
u+1
(u∈(0,1)),可得y′=
1
u
-
2(u+1)-(2u-2)
(u+1)2
=
(u-1)2
u(u+1)2
>0
所以函數(shù)y=lnu-
2u-2
u+1
在(0,1)上單調(diào)遞增,
因此,y<y|u=1=0,即lnu-
2u-2
u+1
<0,也就是ln
m
n
2(
m
n
-1)
m
n
+1
此式與⑤矛盾
所以函數(shù)F(x)在(x0,F(xiàn)(x0))處的切線(xiàn)不能平行于x軸.
點(diǎn)評(píng):本題給出含有對(duì)數(shù)符號(hào)的基本初等函數(shù)函數(shù),討論了函數(shù)的單調(diào)性并探索函數(shù)圖象的切線(xiàn)問(wèn)題,著重考查了導(dǎo)數(shù)的幾何意義和利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線(xiàn)l:y=kx-2與曲線(xiàn)y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線(xiàn)l∥AB,則稱(chēng)直線(xiàn)AB存在“伴侶切線(xiàn)”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱(chēng)直線(xiàn)AB存在“中值伴侶切線(xiàn)”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線(xiàn)AB是否存在“中值伴侶切線(xiàn)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線(xiàn)l過(guò)點(diǎn)(0,-1),并且與曲線(xiàn)y=f(x)相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫(xiě)出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫(xiě)出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線(xiàn)C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線(xiàn)l,使得l為曲線(xiàn)C的對(duì)稱(chēng)軸?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案