如圖,矩形
,滿足
在
上,
在
上,且
∥
∥
,
,
,
,沿
、
將矩形
折起成為一個(gè)直三棱柱,使
與
、
與
重合后分別記為
,在直三棱柱
中,點(diǎn)
分別為
和
的中點(diǎn).
![]()
(I)證明:
∥平面
;
(Ⅱ)若二面角
為直二面角,求
的值.
詳見解析;![]()
.
【解析】
試題分析:
連結(jié)DB1 、DC1,由
是
的中位線來證明線面平行.
由條件可知∠BDC = 90°.再建系求出各點(diǎn)坐標(biāo),求面
的法向量
,面
的法向量
,由二面角
為直二面角得
,從而解得
.
試題解析:(Ⅰ)證:連結(jié)DB1 、DC1 ∵四邊形DBB1D1為矩形,M為D1B的中點(diǎn) 2分
∴M是DB1與D1B的交點(diǎn),且M為DB1的中點(diǎn)
∴MN∥DC1,∴MN∥平面DD1C1C 4分
(Ⅱ)解:四邊形
為矩形,B.C在A1A2上,B1.C1在
上,
且BB1∥CC1∥
,A1B = CA2 = 2,
,
∴∠BDC = 90° 6分
![]()
以DB、DC、DD1所在直線分別為x.y.z軸建立直角坐標(biāo)系,則
D(0,0,0),B(2,0,0),C(0,2,0),D1(0,0,
),B1(2,0,
),C1(0,2,
)
點(diǎn)M、N分別為D1B和B1C1的中點(diǎn),∴![]()
設(shè)平面D1MN的法向量為m = (x,y,z),則
,
令x = 1得:![]()
即
8分
設(shè)平面MNC的法向量為n = (x,y,z),則
,令z = 1得:![]()
即
10分
∵二面角D1-MN-C為直二面角 ∴m⊥n,故
,解得:![]()
∴二面角D1-MN-C為直二面角時(shí),
. 12分
考點(diǎn):1.點(diǎn)、線、面的位置關(guān)系;2.空間向量的應(yīng)用;3.二面角.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年福建省廈門市高一3月月考數(shù)學(xué)試卷 題型:填空題
如圖,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個(gè)點(diǎn)Q滿足PQ⊥DQ,則a的值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省高考適應(yīng)性測(cè)試數(shù)學(xué)(文) 題型:解答題
(本小題滿分13分)
如圖6所示,在直角坐標(biāo)平面上的矩形
中,
,
,點(diǎn)
,
滿足
,
,點(diǎn)
是
關(guān)于原點(diǎn)的對(duì)稱點(diǎn),直線
與
相交于點(diǎn)
.
(Ⅰ)求點(diǎn)
的軌跡方程;
(Ⅱ)若過點(diǎn)
的直線與點(diǎn)
的軌跡相交于
,
兩點(diǎn),求
的面積的最大值.![]()
圖6
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com