【題目】分別求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.
(1)焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過點(diǎn)A (
,-2),B(-2
,1);
(2)與橢圓
有相同焦點(diǎn)且經(jīng)過點(diǎn)M(
,1).
【答案】
(1)解:設(shè)所求橢圓的方程為mx2+ny2=1(m>0,n>0,且m≠n),根據(jù)題意可得:
,
解得
,
∴所求橢圓的標(biāo)準(zhǔn)方程為
+
=1.
(2)解:由橢圓
,可以知道焦點(diǎn)在x軸上,
,
,
,則 ![]()
橢圓C的兩焦點(diǎn)分別為:
和
,
設(shè)橢圓C的方程為:
,
把
代入方程,得
,
即
,
或
(舍),
橢圓C的方程為:
.
【解析】(1)因?yàn)闄E圓的焦點(diǎn)位置不確定,故不能直接設(shè)a,b,可以先設(shè)為m,n,將兩點(diǎn)坐標(biāo)代入解出m和n的值即可。
(2)根據(jù)已知橢圓方程求出c的值,然后設(shè)出要求的橢圓方程,將點(diǎn)M的坐標(biāo)代入,解出a的值,即可得到方程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)
分別是Δ
的邊
的中點(diǎn),連接
.現(xiàn)將
沿
折疊至Δ
的位置,連接
.記平面
與平面
的交線為
,二面角
大小為
.![]()
![]()
(1)證明: ![]()
(2)證明: ![]()
(3)求平面
與平面
所成銳二面角大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程是
(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ=2sinθ.
(Ⅰ) 求曲線C1與C2交點(diǎn)的平面直角坐標(biāo);
(Ⅱ) 點(diǎn)A,B分別在曲線C1 , C2上,當(dāng)|AB|最大時(shí),求△OAB的面積(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合
…,
…,
,對(duì)于
…,
,B=(
…,
,定義A與B的差為
…
,A與B之間的距離為
.
(Ⅰ)若
,求
;
(Ⅱ)證明:對(duì)任意
,有
(i)
,且
;
(ii)
三個(gè)數(shù)中至少有一個(gè)是偶數(shù);
(Ⅲ)對(duì)于
…
…
,再定義一種A與B之間的運(yùn)算,并寫出兩條該運(yùn)算滿足的性質(zhì)(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角
中,
,
,點(diǎn)
在線段
上.
![]()
(Ⅰ) 若
,求
的長(zhǎng);
(Ⅱ)若點(diǎn)
在線段
上,且
,問:當(dāng)
取何值時(shí),
的面積最?并求出面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
中,若對(duì)任意
都有
(
為常數(shù))成立,則稱
為“等差比數(shù)列”,下面對(duì)“等差比數(shù)列” 的判斷:①
不可能為
;②等差數(shù)列一定是等差比數(shù)列; ③等比數(shù)列一定是等差比數(shù)列 ;④通項(xiàng)公式為
(其中
,且
,
)的數(shù)列一定是等差比數(shù)列,其中正確的判斷是( )
A. ①③④ B. ②③④ C. ①④ D. ①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理:“冪勢(shì)既同,則積不容異”,它是中國(guó)古代一個(gè)涉及幾何體體積問題,意思是兩個(gè)等高的幾何體,如在同高處的截面積恒相等,則體積相等,設(shè)A,B為兩個(gè)等高的幾何體,p:A,B的體積相等,q:A,B在同高處的截面積不恒相等,根據(jù)祖暅原理可知,q是-p的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和Sn,且滿足a3·a5=112,a1+a7=22.
(1)求等差數(shù)列{an}的第七項(xiàng)a7和通項(xiàng)公式an;
(2)若數(shù)列{bn}的通項(xiàng)bn=an+an+1,{bn}的前n項(xiàng)和Sn,寫出使得Sn小于55時(shí)所有可能的bn的取值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com