(12分)在四棱錐
中,平面PAD⊥平面ABCD, AB=AD,∠BAD=60°,E、F分別是AP、AD的中點
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
![]()
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)
如圖:在四棱錐
中,底面ABCD是菱形,
,
平面ABCD,點M,N分別為BC,PA的中
點,且![]()
(I)證明:
平面AMN;
(II)求三棱錐N
的體積;
(III)在線段PD上是否存在一點E,
使得
平面ACE;若存在,求出PE的長,若不存在,說明理由。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆河北衡水中學(xué)高二上第四次調(diào)研考試理數(shù)學(xué)卷(解析版) 題型:解答題
如圖,在四棱錐
中,
平面ABCD,底面ABCD是菱形,
,
.
![]()
(1)求證:
平面PAC;
(2)若
,求
與
所成角的余弦值;
(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
在四棱錐
中,
平面ABCD,底面ABCD是菱形,
,
.
![]()
(1)求證:
平面PAC;
(2)若
,求PB與AC所成角的余弦值;
(3)若PA=
,求證:平面PBC⊥平面PDC
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省高三模擬考試理科數(shù)學(xué) 題型:解答題
(12分)在四棱錐
中,底面ABCD是矩形,PA=AD=4,AB=2,PB=
,PD=
。E是PD的中點。
![]()
(1)求證:AE⊥平面PCD;
(2)求二面角
的平面角的大小的余弦值;
(3)在線段BC上是否存在點F,使得三棱錐F—ACE的體積恰為
,
若存在,試確定點F的位置;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年江西省高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題
((13分)
如圖,在四棱錐
中,底面
是正方形,側(cè)棱
=2,
,垂足為F。
(1)求證:PA∥平面BDE。
(2)求證:PB⊥平面DEF。
(3)求二面角B—DE—F的余弦值。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com