【題目】已知數(shù)列{an}的首項a1=3,通項an與前n項和Sn之間滿足2an=SnSn﹣1(n≥2).
(1)求證
是等差數(shù)列,并求公差;
(2)求數(shù)列{an}的通項公式.
【答案】
(1)證明:∵2an=SnSn﹣1(n≥2)∴2(Sn﹣Sn﹣1)=SnSn﹣1
兩邊同時除以SnSn﹣1,得2 ![]()
∴ ![]()
∴
是等差數(shù)列,公差 ![]()
(2)解:∵
∴
= ![]()
∴ ![]()
當(dāng)n≥2時, ![]()
∴ ![]()
【解析】(1)由題設(shè)知2(Sn﹣Sn﹣1)=SnSn﹣1 , 兩邊同時除以SnSn﹣1 , 得2
,由此知
是等差數(shù)列,公差
.(2)由題設(shè)知
,故
.由此能導(dǎo)出數(shù)列{an}的通項公式.
【考點精析】利用等差關(guān)系的確定和數(shù)列的通項公式對題目進(jìn)行判斷即可得到答案,需要熟知如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即
-
=d ,(n≥2,n∈N
)那么這個數(shù)列就叫做等差數(shù)列;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)的離心率為
,且過點(1,
).
(I)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:x2+y2=
相切的直線l交橢圓C與A,B兩點,求△OAB面積的最大值,及取得最大值時直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點,點P的坐標(biāo)(x﹣2,x﹣y)
(1)在一個盒子中,放有標(biāo)號為1,2,3的三張卡片,現(xiàn)從此盒中有放回地先后抽到兩張卡片的標(biāo)號分別記為x,y,求|OP|的最大值,并求事件“|OP|取到最大值”的概率;
(2)若利用計算機(jī)隨機(jī)在[0,3]上先后取兩個數(shù)分別記為x,y,求P點在第一象限的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)g(x)=asinxcosx(a>0)的最大值為
,則函數(shù)f(x)=sinx+acosx的圖象的一條對稱軸方程為( )
A.x=0
B.x=﹣ ![]()
C.x=﹣ ![]()
D.x=﹣ ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個班級中進(jìn)行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于70分者為“成績優(yōu)良”.
![]()
(1)分別計算甲、乙兩班20個樣本中,化學(xué)分?jǐn)?shù)前十的平均分,并大致判斷哪種教學(xué)方式的教學(xué)效果更佳;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面
列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
![]()
附:參考公式:
,其中
.
臨界值表:
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了得到函數(shù)y=3sin(2x+
)的圖象,只要把函數(shù)y=3sinx的圖象上所有的點( )
A.橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變),再把所得圖象所有的點向左平移
個單位長度
B.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把所得圖象所有的點向左平移
個單位長度
C.向右平移
個單位長度,再把所得圖象所有的點橫坐標(biāo)縮短到原來的
倍(縱坐標(biāo)不變)
D.向左平移
個單位長度,再把所得圖象所有的點橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
是大于
的常數(shù))的左、右頂點分別為
、
,點
是橢圓上位于
軸上方的動點,直線
、
與直線
分別交于
、
兩點(設(shè)直線
的斜率為正數(shù)).
(Ⅰ)設(shè)直線
、
的斜率分別為
,
,求證
為定值.
(Ⅱ)求線段
的長度的最小值.
(Ⅲ)判斷“
”是“存在點
,使得
是等邊三角形”的什么條件?(直接寫出結(jié)果)
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一年級學(xué)生某次身體素質(zhì)體能測試的原始成績采用百分制,已知所有這些學(xué)生的原始成績均分布在
內(nèi),發(fā)布成績使用等級制各等級劃分標(biāo)準(zhǔn)見下表,規(guī)定:
、
、
三級為合格等級,
為不合格等級.
百分制 |
|
|
|
|
等級 |
|
|
|
|
為了解該校高一年級學(xué)生身體素質(zhì)情況,從中抽取了
名學(xué)生的原始成績作為樣本進(jìn)行統(tǒng)計,按照
的分組作出頻率分布直方圖如圖
所示,樣本中分?jǐn)?shù)在
分及以上的所有數(shù)據(jù)的莖葉圖如圖
所示.
![]()
(1)求
和頻率分布直方圖中的
的值;
(2)根據(jù)樣本估計總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若在該校高一學(xué)生任選
人,求至少有
人成績是合格等級的概率;
(3)在選取的樣本中,從
、
兩個等級的學(xué)生中隨機(jī)抽取了
名學(xué)生進(jìn)行調(diào)研,記
表示所抽取的
名學(xué)生中為
等級的學(xué)生人數(shù),求隨機(jī)變量
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com